论文标题

Greibach的$ω$ - 代数系统和加权简单$ω$ -PUSHDOWN AUTOMAMATA的普通形式

Greibach Normal Form for $ω$-Algebraic Systems and Weighted Simple $ω$-Pushdown Automata

论文作者

Droste, Manfred, Dziadek, Sven, Kuich, Werner

论文摘要

在加权自动机理论中,许多关于形式语言的经典结果已扩展到定量环境中。在这里,我们调查了无限单词的无上下文语言,$ω$ - 不含语言的概括(Cohen,Gold 1977)以及有限单词的加权无上下文语言的扩展(Chomsky,Schützenberger,1963年)。与正式语法理论一样,这些不加权的无上下文语言或$ω$ - 代数系列可以表示为混合$ω$ - $ - 代码方程式的解决方案,并且通过加权$ω$ -PUSHDOWN AUTAMAMATA。 在我们的第一个主要结果中,我们表明(混合)$ω$ - 代数系统可以转换为Greibach正常形式。我们在第二个主要结果中使用Greibach普通形式,以证明简单的$ω$ -RESET下降自动机识别所有$ω$ -Algebraic系列。简单的$ω$ -RESET自动机不要使用$ε$ - $ - 最多只能通过一个符号更改堆栈。这些结果将无上下文语言的基本属性推广到无上下文的语言。

In weighted automata theory, many classical results on formal languages have been extended into a quantitative setting. Here, we investigate weighted context-free languages of infinite words, a generalization of $ω$-context-free languages (Cohen, Gold 1977) and an extension of weighted context-free languages of finite words (Chomsky, Schützenberger 1963). As in the theory of formal grammars, these weighted context-free languages, or $ω$-algebraic series, can be represented as solutions of mixed $ω$-algebraic systems of equations and by weighted $ω$-pushdown automata. In our first main result, we show that (mixed) $ω$-algebraic systems can be transformed into Greibach normal form. We use the Greibach normal form in our second main result to prove that simple $ω$-reset pushdown automata recognize all $ω$-algebraic series. Simple $ω$-reset automata do not use $ε$-transitions and can change the stack only by at most one symbol. These results generalize fundamental properties of context-free languages to weighted context-free languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源