论文标题

关于班级,扭转亚组和椭圆曲线的二次曲折

On Class Numbers, Torsion Subgroups, and Quadratic Twists of Elliptic Curves

论文作者

Blum, Talia, Choi, Caroline, Hoey, Alexandra, Iskander, Jonas, Lakein, Kaya, Martinez, Thomas C.

论文摘要

椭圆曲线的Mordell-Weil组$ e(\ Mathbb {q})$影响其二次曲折的结构$ e _ { - d}(\ Mathbb {q})$和理想的类群体$ \ m mathrm {clrm {cl}( - cl}(-d)的想象中的Quadratic字段。 For appropriate $(u,v) \in \mathbb{Z}^2$, we define a family of homomorphisms $Φ_{u,v}: E(\mathbb{Q}) \rightarrow \mathrm{CL}(-D)$ for particular negative fundamental discriminants $-D:=-D_E(u,v)$, which we use to simultaneously address questions与班级数,课程组的结构和二次曲折等级有关的下限。具体而言,给定等级$ r $的椭圆曲线$ e $,让$ψ_e$是适合满足以下三个条件的合适基本判别物$ -d <0 $的集合:二次扭曲$ e _ { - d d} $排名至少1;美元和$ h(-d)$满足有效的下限,它像$ c(e)\ log(d)^{\ frac {r} {2}} $作为$ d \ to \ infty $。然后,对于任何$ \ varepsilon> 0 $,我们显示为$ x \ to \ infty $,我们有 $ \#\,\ left \ { - x <-d <0:-d \ inψ_e\ right \} \,\ gg _ {\ varepsilon} x^x^{\ frac {1} {1} {2} {2} {2} - \ \ varepsilon}。 $ \ ell \ mid | e _ {\ mathrm {tor}}(\ mathbb {q})| $,然后,此类判别$ -d $的数量$ \ ell \ ell \ ell \ mid h(-d)$是$ \ gg gg _ gg _ {\ varepsilon} x^x^x^x^{ev}此外,假设奇偶校验的猜想,我们的结果与二次扭曲$ e _ { - d} $的其他条件至少排名2。

The Mordell-Weil groups $E(\mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(\mathbb{Q})$ and the ideal class groups $\mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) \in \mathbb{Z}^2$, we define a family of homomorphisms $Φ_{u,v}: E(\mathbb{Q}) \rightarrow \mathrm{CL}(-D)$ for particular negative fundamental discriminants $-D:=-D_E(u,v)$, which we use to simultaneously address questions related to lower bounds for class numbers, the structures of class groups, and ranks of quadratic twists. Specifically, given an elliptic curve $E$ of rank $r$, let $Ψ_E$ be the set of suitable fundamental discriminants $-D<0$ satisfying the following three conditions: the quadratic twist $E_{-D}$ has rank at least 1; $E_{\text{tor}}(\mathbb{Q})$ is a subgroup of $\mathrm{CL}(-D)$; and $h(-D)$ satisfies an effective lower bound which grows asymptotically like $c(E) \log (D)^{\frac{r}{2}}$ as $D \to \infty$. Then for any $\varepsilon > 0$, we show that as $X \to \infty$, we have $$\#\, \left\{-X < -D < 0: -D \in Ψ_E \right \} \, \gg_{\varepsilon} X^{\frac{1}{2}-\varepsilon}.$$ In particular, if $\ell \in \{3,5,7\}$ and $\ell \mid |E_{\mathrm{tor}}(\mathbb{Q})|$, then the number of such discriminants $-D$ for which $\ell \mid h(-D)$ is $\gg_{\varepsilon} X^{\frac{1}{2}-\varepsilon}.$ Moreover, assuming the Parity Conjecture, our results hold with the additional condition that the quadratic twist $E_{-D}$ has rank at least 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源