论文标题

加速使用图形深度学习的信息性降低蛋白质的识别

Accelerating the identification of informative reduced representations of proteins with deep learning for graphs

论文作者

Errica, Federico, Giulini, Marco, Bacciu, Davide, Menichetti, Roberto, Micheli, Alessio, Potestio, Raffaello

论文摘要

大分子的分子动力学(MD)模拟的限制通过计算机架构和算法的不懈发展稳步推动。 MD轨迹的数量和程度(大小和时间)的爆炸爆炸引起了自动化和可转移方法的需求,以合理化原始数据并从中实现定量意义。最近,我们中的一些人开发了一种算法方法,以识别蛋白质原子或映射的子集,从而可以对其进行最有用的描述。此方法依赖于相关映射熵的给定减少表示形式的计算,即由于简化而导致的信息损失的度量。尽管相对简单,但此计算可能很耗时。在这里,我们描述了一种旨在加快映射熵计算的深度学习方法的实施。该方法依赖于深图网络,该网络在输入格式中提供了极致的灵活性。我们表明,深图网络是准确且非常有效的,相对于映射熵的算法计算,加速因子的加速因子高达$ 10^5 $。该方法的应用在研究其映射熵景观时具有巨大的生物分子研究,这远远超过了这一点,这是可以易于传递到分子结构的任意功能的方案。

The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed forward by the relentless developments of computer architectures and algorithms. This explosion in the number and extent (in size and time) of MD trajectories induces the need of automated and transferable methods to rationalise the raw data and make quantitative sense out of them. Recently, an algorithmic approach was developed by some of us to identify the subset of a protein's atoms, or mapping, that enables the most informative description of it. This method relies on the computation, for a given reduced representation, of the associated mapping entropy, that is, a measure of the information loss due to the simplification. Albeit relatively straightforward, this calculation can be time consuming. Here, we describe the implementation of a deep learning approach aimed at accelerating the calculation of the mapping entropy. The method relies on deep graph networks, which provide extreme flexibility in the input format. We show that deep graph networks are accurate and remarkably efficient, with a speedup factor as large as $10^5$ with respect to the algorithmic computation of the mapping entropy. Applications of this method, which entails a great potential in the study of biomolecules when used to reconstruct its mapping entropy landscape, reach much farther than this, being the scheme easily transferable to the computation of arbitrary functions of a molecule's structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源