论文标题
Siamparsenet:婴儿运动视频中的联合身体解析和标签传播
SiamParseNet: Joint Body Parsing and Label Propagation in Infant Movement Videos
论文作者
论文摘要
婴儿运动视频(IMV)的一般运动评估(GMA)是婴儿早期检测婴儿脑瘫(CP)的有效方法。自动化的身体解析是迈向计算机辅助GMA的关键步骤,在该GMA中,随着时间的推移,对婴儿的身体部位进行了细分和跟踪以进行运动分析。但是,由于IMV中有大量框架,获取基于视频的身体解析的完全注释的数据特别昂贵。在本文中,我们提出了一种被称为Siamparsenet(SPN)的半监督身体解析模型,以共同学习半措辞方式的框架之间的单帧身体解析和标签传播。暹罗结构的SPN由共享特征编码器组成,其次是两个单独的分支:一个用于框架内零件分割,一个用于框架间标签的传播。这两个分支是共同训练的,从与输入相同的视频中取出了一对帧。提出了一个自适应训练过程,该过程在使用仅标记帧的输入对与使用标记和未标记帧的输入之间交替交替训练模式。在测试过程中,我们采用了多源推理机制,其中测试框架的最终结果是通过分割分支或通过附近的钥匙帧传播获得的。我们对部分标记的IMV数据集进行了广泛的实验,在该数据集中,SPN优于所有先前的艺术,证明了我们提出的方法的有效性。
General movement assessment (GMA) of infant movement videos (IMVs) is an effective method for the early detection of cerebral palsy (CP) in infants. Automated body parsing is a crucial step towards computer-aided GMA, in which infant body parts are segmented and tracked over time for movement analysis. However, acquiring fully annotated data for video-based body parsing is particularly expensive due to the large number of frames in IMVs. In this paper, we propose a semi-supervised body parsing model, termed SiamParseNet (SPN), to jointly learn single frame body parsing and label propagation between frames in a semi-supervised fashion. The Siamese-structured SPN consists of a shared feature encoder, followed by two separate branches: one for intra-frame body parts segmentation, and one for inter-frame label propagation. The two branches are trained jointly, taking pairs of frames from the same videos as their input. An adaptive training process is proposed that alternates training modes between using input pairs of only labeled frames and using inputs of both labeled and unlabeled frames. During testing, we employ a multi-source inference mechanism, where the final result for a test frame is either obtained via the segmentation branch or via propagation from a nearby key frame. We conduct extensive experiments on a partially-labeled IMV dataset where SPN outperforms all prior arts, demonstrating the effectiveness of our proposed method.