论文标题
在广义的总 - 瓦迪亚矩阵模型中的多个阶段
Multiple phases in a generalized Gross-Witten-Wadia matrix model
论文作者
论文摘要
我们研究了总 - 韦迪亚类型的统一基质模型,并随着特征多项式插入而扩展。该模型在可解决的统一矩阵模型之间插值,并且是变形的Cauchy合奏的单一对应物。通过将Szegö定理与Fisher-Hartwig Singularity使用Szegö定理获得,以toeplitz的决定因素和未成年人的方式给出了分区函数和威尔逊循环的确切公式。在具有两个缩放耦合的大$ N $(平面)极限中,该理论在二维参数空间中表现出令人惊讶的复杂相结构。
We study a unitary matrix model of the Gross-Witten-Wadia type, extended with the addition of characteristic polynomial insertions. The model interpolates between solvable unitary matrix models and is the unitary counterpart of a deformed Cauchy ensemble. Exact formulas for the partition function and Wilson loops are given in terms of Toeplitz determinants and minors and large $N$ results are obtained by using Szegö theorem with a Fisher-Hartwig singularity. In the large $N$ (planar) limit with two scaled couplings, the theory exhibits a surprisingly intricate phase structure in the two-dimensional parameter space.