论文标题
3D CNN-PCA:一种基于深度学习的参数化
3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
论文作者
论文摘要
地质参数化可以用相对较小的变量来表示地质模型的表示。因此,参数化在数据同化和不确定性定量的背景下非常有用。在这项研究中,为复杂的3D地质模型开发了一种基于深度学习的地质参数化算法CNN-PCA。 CNN-PCA需要将卷积神经网络用作地理位置低维主成分分析表示的后处理器。此处介绍的3D处理与2D CNN-PCA程序中使用的处理有所不同。具体而言,我们引入了一种新的基于监督的基于学习的重建损失,该损失与样式丢失和硬数据丢失结合使用。样式损失使用了从预测的视频分类的3D CNN提取的功能。 3D CNN-PCA算法用于生成有条件的3D实现,以$ 60 \ times60 \ times40 $网格定义,用于三种地质场景(二进制和双峰通道系统,以及一个三倍的通道 - 路线 - 路线 - 路线系统)。 CNN-PCA实现显示出与使用基于对象的方法生成的参考模型在视觉上一致的地质特征。流量响应的统计信息($ \ text {p} _ {10} $,$ \ text {p} _ {50} $,$ \ text {p} _ {p} _ {90} $百分位数结果显示3D CNN-PCA模型的测试集显示与参考地Geomodels的统一相符合。最后,CNN-PCA已成功应用于与双峰通道系统的历史记录匹配。
Geological parameterization enables the representation of geomodels in terms of a relatively small set of variables. Parameterization is therefore very useful in the context of data assimilation and uncertainty quantification. In this study, a deep-learning-based geological parameterization algorithm, CNN-PCA, is developed for complex 3D geomodels. CNN-PCA entails the use of convolutional neural networks as a post-processor for the low-dimensional principal component analysis representation of a geomodel. The 3D treatments presented here differ somewhat from those used in the 2D CNN-PCA procedure. Specifically, we introduce a new supervised-learning-based reconstruction loss, which is used in combination with style loss and hard data loss. The style loss uses features extracted from a 3D CNN pretrained for video classification. The 3D CNN-PCA algorithm is applied for the generation of conditional 3D realizations, defined on $60\times60\times40$ grids, for three geological scenarios (binary and bimodal channelized systems, and a three-facies channel-levee-mud system). CNN-PCA realizations are shown to exhibit geological features that are visually consistent with reference models generated using object-based methods. Statistics of flow responses ($\text{P}_{10}$, $\text{P}_{50}$, $\text{P}_{90}$ percentile results) for test sets of 3D CNN-PCA models are shown to be in consistent agreement with those from reference geomodels. Lastly, CNN-PCA is successfully applied for history matching with ESMDA for the bimodal channelized system.