论文标题

为花圈产品的单一字符生成功能

Generating functions for monomial characters of wreath products $\mathbb Z/d \mathbb Z \wr \mathfrak S_n$

论文作者

Skandera, Mark

论文摘要

令$ \ MATHBB Z/D \ MATHBB Z \ WR \ MATHFRAK S_N $用对称组$ \ Mathfrak S_N $表示环状组$ \ Mathbb z/d \ Mathbb z $的花环产品。我们为$ \ Mathbb z/d \ Mathbb Z \ wr \ Mathfrak s_n $的单一字符(诱导的一维)字符定义生成功能,并根据决定因素和永久性来表达这些功能。这扩展了Littlewood的工作({\ em的群体特征和组的形式},1940年),以及Merris和Watkins({\ em lineal algebra appl。},{\ bf 64},1985年,1985年)在生成函数的$ \ \ \ \ m mathfrak s_n $的单一字符上生成功能。

Let $\mathbb Z/d\mathbb Z \wr \mathfrak S_n$ denote the wreath product of the cyclic group $\mathbb Z/d\mathbb Z$ with the symmetric group $\mathfrak S_n$. We define generating functions for monomial (induced one-dimensional) characters of $\mathbb Z/d\mathbb Z \wr \mathfrak S_n$ and express these in terms of determinants and permanents. This extends work of Littlewood ({\em The Theory of Group Characters and Representations of Groups}, 1940) and Merris and Watkins ({\em Linear Algebra Appl.}, {\bf 64}, 1985) on generating functions for the monomial characters of $\mathfrak S_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源