论文标题

使用可逆神经网络从光度法中测定恒星参数

Stellar Parameter Determination from Photometry using Invertible Neural Networks

论文作者

Ksoll, Victor F., Ardizzone, Lynton, Klessen, Ralf, Koethe, Ullrich, Sabbi, Elena, Robberto, Massimo, Gouliermis, Dimitrios, Rother, Carsten, Zeidler, Peter, Gennaro, Mario

论文摘要

使用哈勃太空望远镜(HST)的光度测量使我们能够研究具有高分辨率和深层覆盖范围的恒星种群,并估计通常通过将调查数据与适当的恒星进化模型进行比较来获得组成恒星的物理参数。由于差异,光度法误差,低滤波器覆盖率或恒星演化计算中的不确定性,这是一项高度非平凡的任务。这些引入了难以检测和破裂的变性。为了改善这种情况,我们介绍了一种新型的深度学习方法,称为条件可逆神经网络(CINN),以解决以单个恒星为基础从光度法中预测物理参数并获得完整后验分布的相反问题。我们构建了一个经过精心策划的合成训练数据集,该数据集从PARSEC恒星演化模型中得出,以预测恒星年龄,初始/电流质量,发光度,有效温度和表面重力。我们对来自MIST和DARTMOUTH模型的合成数据进行了测试,并基于我们对两个良好研究的恒星群集Westerlund 2和NGC 6397的HST数据进行基准测试。对于合成数据,我们发现了总体上的出色性能,并注意到年龄是最困难的约束参数。对于基准集群,我们检索了合理的结果,并确认了群集年龄上Westerlund 2的先前发现($ 1.04 _ { - 0.90}^{+8.48} \,\ Mathrm {myr} $),质量隔离和恒星初始质量功能。对于NGC 6397,我们恢复了对质量,亮度和温度的合理估计值,但是,恒星进化模型和观察结果之间的差异阻止了老恒星的年龄恢复。

Photometric surveys with the Hubble Space Telescope (HST) allow us to study stellar populations with high resolution and deep coverage, with estimates of the physical parameters of the constituent stars being typically obtained by comparing the survey data with adequate stellar evolutionary models. This is a highly non-trivial task due to effects such as differential extinction, photometric errors, low filter coverage, or uncertainties in the stellar evolution calculations. These introduce degeneracies that are difficult to detect and break. To improve this situation, we introduce a novel deep learning approach, called conditional invertible neural network (cINN), to solve the inverse problem of predicting physical parameters from photometry on an individual star basis and to obtain the full posterior distributions. We build a carefully curated synthetic training data set derived from the PARSEC stellar evolution models to predict stellar age, initial/current mass, luminosity, effective temperature and surface gravity. We perform tests on synthetic data from the MIST and Dartmouth models, and benchmark our approach on HST data of two well-studied stellar clusters, Westerlund 2 and NGC 6397. For the synthetic data we find overall excellent performance, and note that age is the most difficult parameter to constrain. For the benchmark clusters we retrieve reasonable results and confirm previous findings for Westerlund 2 on cluster age ($1.04_{-0.90}^{+8.48}\,\mathrm{Myr} $), mass segregation, and the stellar initial mass function. For NGC 6397 we recover plausible estimates for masses, luminosities and temperatures, however, discrepancies between stellar evolution models and observations prevent an acceptable recovery of age for old stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源