论文标题

某些变量和混合功能空间的生长信封

Growth envelopes of some variable and mixed function spaces

论文作者

Haroske, Dorothee D., Schneider, Cornelia, Szarvas, Kristóf

论文摘要

我们研究了属于Lebesgue和Lorentz空间具有可变和混合规范功能的功能的无界性能。我们的结果以自然方式扩展了相应的经典空间的结果。对于具有混合规范的空间,事实证明,最糟糕的方向的无限性,即在$ p_ {i} $的方向上,最小的是至关重要的。更准确地说,生长封装由$ e_g(l _ {\ vec {p}}(ω))=(t^{ - 1/\ min \ {p_ {p_ {1},\ ldots,p_ {d}}}}}}},\ min \ min \ {p_ {p_ {p_ {p_ {p_ {p_ {1}}混合Lebesgue和$ e_g(l _ {\ vec {p},q}(ω))=(t^{ - 1/\ min \ {p_ {1},\ ldots,p_ {d}}}},q)分别用于混合Lorentz空间。对于可变lebesgue空间,我们获得$ e_g(l_ {p(\ cdot)}(ω)))=(t^{ - 1/p _ { - }},p _ { - })$,其中$ p _ { - } $是$ p(\ cdot)$的基本信息。同样,对于可变lorentz空间,它保留$ e_g(l_ {p(\ cdot),q}(ω))=(t^{ - 1/p _ { - }},q)$。生长包膜用于强壮的型不平等和限制嵌入。特别是,作为副产品,我们确定了分别包含固定混合或可变的Lebesgue(Lorentz)空间的最小古典Lebesgue(Lorentz)空间。

We study unboundedness properties of functions belonging Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms it turns out that the unboundedness in the worst direction, i.e., in the direction where $p_{i}$ is the smallest, is crucial. More precisely, the growth envelope is given by $E_G(L_{\vec{p}}(Ω)) = (t^{-1/\min\{p_{1}, \ldots, p_{d} \}},\min\{p_{1}, \ldots, p_{d} \})$ for mixed Lebesgue and $E_G(L_{\vec{p},q}(Ω)) = (t^{-1/\min\{p_{1}, \ldots, p_{d} \}},q)$ for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces we obtain $E_G(L_{p(\cdot)}(Ω)) = (t^{-1/p_{-}},p_{-})$, where $p_{-}$ is the essential infimum of $p(\cdot)$, subject to some further assumptions. Similarly, for the variable Lorentz space it holds $E_G(L_{p(\cdot),q}(Ω)) = (t^{-1/p_{-}},q)$. The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源