论文标题

强大的机器学习算法以搜索连续的引力波

A robust machine learning algorithm to search for continuous gravitational waves

论文作者

Bayley, Joseph, Messenger, Chris, Woan, Graham

论文摘要

许多连续的引力波搜索受仪器光谱线的影响,这些光谱线可能与连续的天体物理信号相混淆。已经开发了几种技术来通过仅在单个检测器中出现的信号来限制这些线的效果。我们使用卷积神经网络开发了一种通用方法,以减少仪器伪像对使用肥皂算法的搜索的影响。该方法可以识别每个检测器的相应频带中的特征,并将这些频段分类为包含信号,仪器线或噪声。我们针对四个不同的数据集测试了该方法:带有时间差距的高斯噪声,初始LIGO(S6)的最终运行中的数据,并添加了信号,参考S6模拟数据挑战数据集以及从第二个高级LIGO观察运行(O2)中注入数据中的信号。使用S6模拟数据挑战数据集,并以1%的错误警报概率表明,在95%的效率下,完全自动的肥皂搜索具有敏感性,对应于110的相干信噪比为110,等于敏感性深度为10 Hz $^{-1/2} $,使得与其他人类搜索相当有效地计算,并且需要与其他搜索进行竞争。

Many continuous gravitational wave searches are affected by instrumental spectral lines that could be confused with a continuous astrophysical signal. Several techniques have been developed to limit the effect of these lines by penalising signals that appear in only a single detector. We have developed a general method, using a convolutional neural network, to reduce the impact of instrumental artefacts on searches that use the SOAP algorithm. The method can identify features in corresponding frequency bands of each detector and classify these bands as containing a signal, an instrumental line, or noise. We tested the method against four different data-sets: Gaussian noise with time gaps, data from the final run of Initial LIGO (S6) with signals added, the reference S6 mock data challenge data set and signals injected into data from the second advanced LIGO observing run (O2). Using the S6 mock data challenge data set and at a 1% false alarm probability we showed that at 95% efficiency a fully-automated SOAP search has a sensitivity corresponding to a coherent signal-to-noise ratio of 110, equivalent to a sensitivity depth of 10 Hz$^{-1/2}$, making this automated search competitive with other searches requiring significantly more computing resources and human intervention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源