论文标题
在一维静止浴中驱动的示踪动力
Driven tracer dynamics in a one dimensional quiescent bath
论文作者
论文摘要
静态浴中驱动的示踪剂的动力学受到几何限制的影响有效地模拟了广泛的现象。我们在1D晶格模型中探索这种动力学,其中几何限制是通过颗粒超过速率来调节的。先前对$ l $站点环上模型的固定属性的研究表明了一个阶段,在该阶段中,浴缸密度曲线在$ \ sim \ Mathcal {o}(l)$距离示踪剂和示踪剂的速度随着$ \ sim 1/l $中消失的距离。在这里,我们在此阶段将模型的动态研究为$ l \ rightarrow \ infty $,并且很长时间。我们表明,沐浴密度曲线在$ \ sim \ sqrt {t} $时间尺度上演变,并且相应地,示踪剂的速度衰减为$ \ sim 1/\ sqrt {t} $。与研究良好的非驱动示踪剂(每当允许超车时)的动力学扩散不同,我们在这里发现,即使在超车存在的情况下,驾驶示踪剂也可以保留其标志性的亚置单文件动力学。
The dynamics of a driven tracer in a quiescent bath subject to geometric confinement effectively models a broad range of phenomena. We explore this dynamics in a 1D lattice model where geometric confinement is tuned by varying particle overtaking rates. Previous studies of the model's stationary properties on a ring of $L$ sites have revealed a phase in which the bath density profile extends over an $\sim \mathcal{O}(L)$ distance from the tracer and the tracer's velocity vanishes as $\sim 1/L$. Here, we study the model's dynamics in this phase as $L\rightarrow \infty$ and for long times. We show that the bath density profile evolves on a $\sim \sqrt{t}$ time-scale and, correspondingly, that the tracer's velocity decays as $\sim 1/\sqrt{t}$. Unlike the well-studied non-driven tracer, whose dynamics becomes diffusive whenever overtaking is allowed, we here find that driving the tracer preserves its hallmark sub-diffusive single-file dynamics, even in the presence of overtaking.