论文标题

暗物质物理学中的深色$ su(2)$量规对称性与非亚洲动力学混合

Dark matter physics in dark $SU(2)$ gauge symmetry with non-Abelian kinetic mixing

论文作者

Ko, P., Nomura, Takaaki, Okada, Hiroshi

论文摘要

我们研究了一个基于非亚伯利亚$ su(2)_d $ gauge对称性的黑暗部门模型。通过两个真实三重三重量表的真空预期值,这种深色量规对称性被分解为离散的$ z_2 $,而$ su(2)_d $ doublet dirac fermion变成$ z_2- $奇数粒子,其较轻的组件使稳定的暗物质候选者。标准模型和黑暗扇区可以通过标量混合以及较高维操作员产生的尺度动力学混合连接。然后,我们讨论暗物质的遗物密度以及模型中对撞机物理的影响。该模型在LHC上的最独特签名将是深色标量($φ_1^{(')} $)作品,随后它会延迟到:(1)效率的暗物质($χ_l$)和沉重的深色Fermion($χ_h$)($χ_h$)对,$φ_1^{(') χ_l)$,其次是$χ_h$衰减成$χ_l$和非 - 亚伯利亚黑暗量规玻色子($ x_i $'S),它衰减为Sm fermion对$ \ bar f_ {sm} f_ {sm} f_ {sm} f_ {sm} $ χ_lχ_h)\ to f_ {sm} \ bar f_ {sm}χ_l\ barχ_l$,(2)一对$ x_i $'s,然后是$ x_i $''dm pair中的$ x_i $衰减,或者在反应中导致的sm fermions $ p p p \ p \ rightarrow irrow urow undrow之路; \ bχ_lχ_lf_ {sm} \ bar f_ {sm} $,甚至$ f_ {sm} \ bar {f} _ {sm} $ pairs的$ f_ {sm} \ bar。

We investigate a model of dark sector based on non-Abelian $SU(2)_D$ gauge symmetry. This dark gauge symmetry is broken into discrete $Z_2$ via vacuum expectation values of two real triplet scalars, and an $SU(2)_D$ doublet Dirac fermion becomes $Z_2-$odd particles whose lighter component makes stable dark matter candidate. The standard model and dark sector can be connected via the scalar mixing and the gauge kinetic mixing generated by higher dimensional operators. We then discuss relic density of dark matter and implications to collider physics in the model. The most unique signatures of this model at the LHC would be the dark scalar ($Φ_1^{(')}$) productions where it subsequently decays into : (1) a fermionic dark matter ($χ_l$) and a heavy dark fermion ($χ_h$) pair, $Φ_1^{(')} \to \bar χ_l χ_h(\bar χ_h χ_l) $, followed by $χ_h$ decays into $χ_l$ and non-Abelian dark gauge bosons ($X_i$'s) which decays into SM fermion pair $\bar f_{SM} f_{SM}$ resulting in the reaction $p p \rightarrow Φ_1^{(')} \rightarrow \bar χ_h χ_l (\bar χ_l χ_h) \to f_{SM} \bar f_{SM} χ_l \bar χ_l $, (2) a pair of $X_i$'s followed by $X_i$ decays into a DM pair or the SM fermions resulting in the reaction, $p p \rightarrow Φ_1^{(')} \rightarrow X_i X_i \rightarrow \bar χ_l χ_l f_{SM} \bar f_{SM}$ or even number of $f_{SM} \bar{f}_{SM}$ pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源