论文标题

线性计算系统的终极周期性问题

Ultimate periodicity problem for linear numeration systems

论文作者

Charlier, E., Massuir, A., Rigo, M., Rowland, E.

论文摘要

我们解决以下决策问题。给定一个计数系统$ u $和$ u $ - 验证套件$ x \ subseteq \ mathbb {n} $,即其贪婪的$ u $ - 代表的集合可以通过有限的automaton识别,确定$ x $是否最终定期。我们证明,对于基于线性循环序列构建的大量计算系统,这是可决定的。基于对复发方程和$ p $ - adiC方法的算术考虑,作为输入的DFA提供了对可允许的测试期的界限。

We address the following decision problem. Given a numeration system $U$ and a $U$-recognizable set $X\subseteq\mathbb{N}$, i.e. the set of its greedy $U$-representations is recognized by a finite automaton, decide whether or not $X$ is ultimately periodic. We prove that this problem is decidable for a large class of numeration systems built on linearly recurrent sequences. Based on arithmetical considerations about the recurrence equation and on $p$-adic methods, the DFA given as input provides a bound on the admissible periods to test.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源