论文标题
低维
Private Approximations of a Convex Hull in Low Dimensions
论文作者
论文摘要
我们给出了第一个差异私人算法,这些算法估算了欧几里得空间中点的各种几何特征,例如直径,宽度,凸面船体的体积,最小的盒子,最小球。我们的算法并没有(非主要)近似给定的点$ p $的凸起,而是近似于$ p $引起的$κ$ -Tukey区域的几何特征(Tukey-Depth $κ$或更大的点的所有点)。此外,我们的近似值都是双重标准:对于任何几何特征$ $ $ $ $ us $(α,δ)$ - 近似值是$(1-α)μ(d_p(κ)$和$(1+α)μ(d_p(κ-δ)$)之间的“夹紧”的值。 我们的工作旨在生产$ d_p(κ)$}的\ emph {$(α,δ)$ - 内核,即$ \ nathcal {s} $,使得(换档后)认为$(1-α)d_p(1-α)d_p(κ)\ subset \ subset \ subss \ subss \ subss \ subssf { (1+α)d_p(κ-δ)$。我们表明,正如Agarwal等人〜[2004],\ emph {Fails flafs}提出的,对方向内核的双标准近似的类似概念,因此我们会导致键入近似项目产生核的近似值的概念。首先,我们提供了差异化的私有算法,这些算法找到了“脂肪” Tukey-Region的$(α,δ)$ - 内核。然后,基于最小框的私人近似值,我们找到了一种转换,该转换确实将$ d_p(κ)$转换为“脂肪”区域\ emph {,但仅当它的体积与$ d_p(κ-Δ)$的体积成正比时。最后,我们给出了一种新颖的私人算法,该算法找到了深度参数$κ$,$ d_p(κ)$的体积可与$ d_p(κ-δ)$相当。我们希望这项工作能够进一步研究差异隐私和计算几何形状的交集。
We give the first differentially private algorithms that estimate a variety of geometric features of points in the Euclidean space, such as diameter, width, volume of convex hull, min-bounding box, min-enclosing ball etc. Our work relies heavily on the notion of \emph{Tukey-depth}. Instead of (non-privately) approximating the convex-hull of the given set of points $P$, our algorithms approximate the geometric features of the $κ$-Tukey region induced by $P$ (all points of Tukey-depth $κ$ or greater). Moreover, our approximations are all bi-criteria: for any geometric feature $μ$ our $(α,Δ)$-approximation is a value "sandwiched" between $(1-α)μ(D_P(κ))$ and $(1+α)μ(D_P(κ-Δ))$. Our work is aimed at producing a \emph{$(α,Δ)$-kernel of $D_P(κ)$}, namely a set $\mathcal{S}$ such that (after a shift) it holds that $(1-α)D_P(κ)\subset \mathsf{CH}(\mathcal{S}) \subset (1+α)D_P(κ-Δ)$. We show that an analogous notion of a bi-critera approximation of a directional kernel, as originally proposed by Agarwal et al~[2004], \emph{fails} to give a kernel, and so we result to subtler notions of approximations of projections that do yield a kernel. First, we give differentially private algorithms that find $(α,Δ)$-kernels for a "fat" Tukey-region. Then, based on a private approximation of the min-bounding box, we find a transformation that does turn $D_P(κ)$ into a "fat" region \emph{but only if} its volume is proportional to the volume of $D_P(κ-Δ)$. Lastly, we give a novel private algorithm that finds a depth parameter $κ$ for which the volume of $D_P(κ)$ is comparable to $D_P(κ-Δ)$. We hope this work leads to the further study of the intersection of differential privacy and computational geometry.