论文标题
机器人环境的看不见的对象实例细分
Unseen Object Instance Segmentation for Robotic Environments
论文作者
论文摘要
为了在非结构化环境中运行,机器人需要能够识别看不见的对象的能力。我们通过解决桌面环境中的看不见的对象实例的问题来朝这个方向迈出一步。但是,对于大多数机器人设置,通常不存在此任务所需的大规模现实世界数据集的类型,这激发了合成数据的使用。我们提出的方法UOIS-NET分别利用合成RGB和合成深度来进行看不见的对象实例分割。 UOIS-NET由两个阶段组成:首先,它仅在深度上运行以在2D或3D中产生对象实例中心投票,并将它们组装成粗糙的初始掩码。其次,这些初始面具是使用RGB完善的。出乎意料的是,我们的框架能够从RGB是非遗物的合成RGB-D数据中学习。为了训练我们的方法,我们在桌面上引入了一个随机对象的大规模合成数据集。我们表明,我们的方法可以产生尖锐而准确的分割掩码,在看不见的对象实例分割上优于最先进的方法。我们还表明,我们的方法可以将看不见的对象细分用于机器人抓握。
In order to function in unstructured environments, robots need the ability to recognize unseen objects. We take a step in this direction by tackling the problem of segmenting unseen object instances in tabletop environments. However, the type of large-scale real-world dataset required for this task typically does not exist for most robotic settings, which motivates the use of synthetic data. Our proposed method, UOIS-Net, separately leverages synthetic RGB and synthetic depth for unseen object instance segmentation. UOIS-Net is comprised of two stages: first, it operates only on depth to produce object instance center votes in 2D or 3D and assembles them into rough initial masks. Secondly, these initial masks are refined using RGB. Surprisingly, our framework is able to learn from synthetic RGB-D data where the RGB is non-photorealistic. To train our method, we introduce a large-scale synthetic dataset of random objects on tabletops. We show that our method can produce sharp and accurate segmentation masks, outperforming state-of-the-art methods on unseen object instance segmentation. We also show that our method can segment unseen objects for robot grasping.