论文标题
量化黑洞空位之间的亲密关系:超空间方法
Quantifying closeness between black hole spacetimes: a superspace approach
论文作者
论文摘要
所有可以放在给定的歧管上的指标集定义了一个无限的“超空间”,它本身可以与riemannian歧管的结构相处。 MET $(M)$之间的测量距离衡量$ M $的两个不同指标与彼此之间有多近。因此,将我们的注意力仅限于描述物理黑洞的那些指标,因此可以认为这些距离可以被认为是测量不同黑洞结构之间几何相似性水平。这允许系统地量化黑洞的程度,即可能是重力理论的精确解决方案,以某种方式扩展了一般相对论,可能是“非kerr”。在本文中,进行了详细的固定空间,用于固定的黑洞,并进行了任意数量的头发。作为示例应用程序,我们能够加强Konoplya和Zhidenko最近对哪些偏差参数描述一个假设的,非Schwarzschild黑洞的主张,这可能与天体物理可观察到最相关。
The set of all metrics that can be placed on a given manifold defines an infinite-dimensional `superspace' that can itself be imbued with the structure of a Riemannian manifold. Geodesic distances between points on Met$(M)$ measure how close two different metrics over $M$ are to one another. Restricting our attention to only those metrics that describe physical black holes, these distances may therefore be thought of as measuring the level of geometric similarity between different black hole structures. This allows for a systematic quantification of the extent to which a black hole, possibly arising as an exact solution to a theory of gravity extending general relativity in some way, might be `non-Kerr'. In this paper, a detailed construction of a superspace for stationary black holes with an arbitrary number of hairs is carried out. As an example application, we are able to strengthen a recent claim made by Konoplya and Zhidenko about which deviation parameters describing a hypothetical, non-Schwarzschild black hole are likely to be most relevant for astrophysical observables.