论文标题

使用复发性神经网络的时间序列预测的快速噪声过滤算法

A fast noise filtering algorithm for time series prediction using recurrent neural networks

论文作者

Rubinstein, Boris

论文摘要

最近的研究表明,基于嘈杂输入的复发神经网络(RNN)对时间序列的预测会产生平稳的预期轨迹。我们检查了RNN的内部动力学,并建立了此类行为所需的一组条件。基于此分析,我们提出了一种新的近似算法,并表明它可以显着加快预测过程而不会丧失准确性。

Recent research demonstrate that prediction of time series by recurrent neural networks (RNNs) based on the noisy input generates a smooth anticipated trajectory. We examine the internal dynamics of RNNs and establish a set of conditions required for such behavior. Based on this analysis we propose a new approximate algorithm and show that it significantly speeds up the predictive process without loss of accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源