论文标题
等级:图形动态嵌入
GRADE: Graph Dynamic Embedding
论文作者
论文摘要
表示静态和最近动态发展的图表的表示,引起了人们的关注。现有的建模图动力学的方法将独立于中尺度社区结构的演变而广泛地关注单个节点的演变。结果,当前的方法没有提供有用的工具来学习,也无法明确捕获时间社区动态。为了应对这一挑战,我们提出了一种概率模型,该模型学会通过在其轨迹上进行随机步行而学会产生不断发展的节点和社区表示。我们的模型还学习了节点社区成员资格,该成员通过过渡矩阵在时间步骤之间进行更新。在每个时间,步骤链接生成都是通过首先从社区分配中分配节点会员资格,然后从分配中的分布中的邻居来对分配的社区进行抽样。我们通过神经网络对节点和社区分布进行参数,并通过变异推断来学习其参数。实验表明,在动态链路预测中,成绩优于基线,在动态社区检测中表现出良好的表现,并确定了一致且可解释的不断发展的社区。
Representation learning of static and more recently dynamically evolving graphs has gained noticeable attention. Existing approaches for modelling graph dynamics focus extensively on the evolution of individual nodes independently of the evolution of mesoscale community structures. As a result, current methods do not provide useful tools to study and cannot explicitly capture temporal community dynamics. To address this challenge, we propose GRADE - a probabilistic model that learns to generate evolving node and community representations by imposing a random walk prior over their trajectories. Our model also learns node community membership which is updated between time steps via a transition matrix. At each time step link generation is performed by first assigning node membership from a distribution over the communities, and then sampling a neighbor from a distribution over the nodes for the assigned community. We parametrize the node and community distributions with neural networks and learn their parameters via variational inference. Experiments demonstrate GRADE outperforms baselines in dynamic link prediction, shows favourable performance on dynamic community detection, and identifies coherent and interpretable evolving communities.