论文标题
综合VAC:识别动态运算符的特征功能的强大策略
Integrated VAC: A robust strategy for identifying eigenfunctions of dynamical operators
论文作者
论文摘要
分析物理系统动力学的一种方法是在其动作中搜索长寿模式。对于分子动力学数据,这种方法特别成功,在该数据中,缓慢去相关的模式可以表明大规模构象变化。检测这种模式是构象动力学变异方法(VAC)的核心目标,以及相关的时间下降的独立组件分析和马尔可夫态建模的方法。在VAC中,搜索缓慢的去相关模式被形式化为系统过渡算子的征征解决的变异问题。 VAC通过使用时间序列数据优化本征函数的线性或非线性模型来计算该变异问题的解决方案。在这里,我们通过解决两个实际限制来建立VAC的成功。首先,当选择滞后时间参数不佳时,VAC可以给出差的本本征估计。其次,当使用灵活的参数化(例如人工神经网络)时,VAC可能会过高。为了解决这些问题,我们提出了一个称为Integrated Vac(IVAC)的扩展名。 IVAC在解决变异问题之前会在多个滞后时间整合,从而使其结果比VAC更强和可重现。
One approach to analyzing the dynamics of a physical system is to search for long-lived patterns in its motions. This approach has been particularly successful for molecular dynamics data, where slowly decorrelating patterns can indicate large-scale conformational changes. Detecting such patterns is the central objective of the variational approach to conformational dynamics (VAC), as well as the related methods of time-lagged independent component analysis and Markov state modeling. In VAC, the search for slowly decorrelating patterns is formalized as a variational problem solved by the eigenfunctions of the system's transition operator. VAC computes solutions to this variational problem by optimizing a linear or nonlinear model of the eigenfunctions using time series data. Here, we build on VAC's success by addressing two practical limitations. First, VAC can give poor eigenfunction estimates when the lag time parameter is chosen poorly. Second, VAC can overfit when using flexible parameterizations such as artificial neural networks with insufficient regularization. To address these issues, we propose an extension that we call integrated VAC (IVAC). IVAC integrates over multiple lag times before solving the variational problem, making its results more robust and reproducible than VAC's.