论文标题
孤立的圆环不变性和刚性品种的自动形态群
Isolated torus invariants and automorphism groups of rigid varieties
论文作者
论文摘要
Perepechko和Zaidenberg猜想刚性仿射品种的自动形态组的中性成分是圆环。我们证明了具有复杂性的圆环动作的曲折品种和品种的猜想。我们还获得了一个刚性品种的$ m $ suspention的标准(对于每个刚性品种和每个常规功能)。此外,我们研究满足此标准的$ M $ suspensions的自动形态小组。
Perepechko and Zaidenberg conjectured that the neutral component of the automorphism group of a rigid affine variety is a torus. We prove this conjecture for toric varieties and varieties with a torus action of complexity one. We also obtain a criterion for an $m$-suspension over a rigid variety to be rigid (for every rigid variety and every regular function). Additionally, we study the automorphism group of $m$-suspensions satisfying this criterion.