论文标题
用无线电脉冲限制密集物质方程
Constraining the dense matter equation-of-state with radio pulsars
论文作者
论文摘要
无线电脉冲星为我们在上核密度上对物质的理解提供了一些最重要的约束。到目前为止,这些约束主要由中子星(NS)的精确质量测量给出。通过结合两个最大的脉冲星的单个测量值,J0348 $+$ 0432和J0740 $+$+$ 6620,由此产生的下限1.98 $ m_ \ odot $(99%信心)最大NS质量的质量,不包括大量状态方程式(EOSS)。与其他方法互补的其他EOS约束可能来自相对论轨道中二元脉冲星的惯性时刻的测量。 Double Pulsar,PSR J0737 $ - $ 3039A/b,是通过PULSAR时机首次测量MOI的最有希望的系统。审查该方法,特别是基于对双重脉冲星的第一个Meerkat观察结果,我们通过与Meerkat和SKA模拟定时观测来为未来提供充分的预测。我们第一次考虑分析中的降低质量损失。我们的结果表明,到2030年,MOI测量的精度为11%。最后,我们证明,具有轨道周期短的双NS系统的潜在新发现比双脉冲星的轨道周期短,有望在这些测量值以及对NS物质的限制方面进行显着改进。
Radio pulsars provide some of the most important constraints for our understanding of matter at supranuclear densities. So far, these constraints are mostly given by precision mass measurements of neutron stars (NS). By combining single measurements of the two most massive pulsars, J0348$+$0432 and J0740$+$6620, the resulting lower limit of 1.98 $M_\odot$ (99% confidence) of the maximum NS mass, excludes a large number of equations of state (EOSs). Further EOS constraints, complementary to other methods, are likely to come from the measurement of the moment of inertia (MOI) of binary pulsars in relativistic orbits. The Double Pulsar, PSR J0737$-$3039A/B, is the most promising system for the first measurement of the MOI via pulsar timing. Reviewing this method, based in particular on the first MeerKAT observations of the Double Pulsar, we provide well-founded projections into the future by simulating timing observations with MeerKAT and the SKA. For the first time, we account for the spin-down mass loss in the analysis. Our results suggest that an MOI measurement with 11% accuracy (68% confidence) is possible by 2030. If by 2030 the EOS is sufficiently well known, however, we find that the Double Pulsar will allow for a 7% test of Lense-Thirring precession, or alternatively provide a $\sim3σ$-measurement of the next-to-leading order gravitational wave damping in GR. Finally, we demonstrate that potential new discoveries of double NS systems with orbital periods shorter than that of the Double Pulsar promise significant improvements in these measurements and the constraints on NS matter.