论文标题

PVSNET:PixelWise可见性 - 感知多视图立体网络网络

PVSNet: Pixelwise Visibility-Aware Multi-View Stereo Network

论文作者

Xu, Qingshan, Tao, Wenbing

论文摘要

最近,基于学习的多视图立体声方法已取得了令人鼓舞的结果。但是,它们均忽略了不同观点之间的可见性差异,这导致了不加区分的多视图相似性定义,并在具有强烈观点变化的数据集上极大地限制了它们的性能。在本文中,为稳健的致密3D重建提出了PixelWise可见性多视觉立体网络(PVSNET)。我们提出一个像素方的可见性网络,以在计算多视图相似性之前了解不同相邻图像的可见性信息,然后使用可见性信息构建自适应加权成本量。此外,我们提出了一种反噪声培训策略,该策略在模型培训期间介绍了令人不安的观点,以使PixelWise的可见性网络更可区分与无关的观点,这与仅使用两个最佳相邻视图进行培训的现有学习方法不同。据我们所知,PVSNet是第一个能够捕获不同相邻视图的可见性信息的第一个深度学习框架。这样,我们的方法可以很好地将其推广到不同类型的数据集,尤其是具有强烈观点变化的ETH3D高分辨率基准。广泛的实验表明,PVSNET可以在不同数据集上实现最新性能。

Recently, learning-based multi-view stereo methods have achieved promising results. However, they all overlook the visibility difference among different views, which leads to an indiscriminate multi-view similarity definition and greatly limits their performance on datasets with strong viewpoint variations. In this paper, a Pixelwise Visibility-aware multi-view Stereo Network (PVSNet) is proposed for robust dense 3D reconstruction. We present a pixelwise visibility network to learn the visibility information for different neighboring images before computing the multi-view similarity, and then construct an adaptive weighted cost volume with the visibility information. Moreover, we present an anti-noise training strategy that introduces disturbing views during model training to make the pixelwise visibility network more distinguishable to unrelated views, which is different with the existing learning methods that only use two best neighboring views for training. To the best of our knowledge, PVSNet is the first deep learning framework that is able to capture the visibility information of different neighboring views. In this way, our method can be generalized well to different types of datasets, especially the ETH3D high-res benchmark with strong viewpoint variations. Extensive experiments show that PVSNet achieves the state-of-the-art performance on different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源