论文标题

不可约性标准,不可减至因素,牛顿多边形技术

Irreducibility criterion, irreducible factors, Newton polygon techniques

论文作者

Fadil, Lhoussain El

论文摘要

jakhar表明,对于$ f(x)= a_nx^n+ a_ {n-1} x^{n-1}+ \ cdot+ a_0 $($ a_0 \ neq 0 $)是具有理性系数的多项式 (n-i)ν_p(a_0)> 0$ for every $0\le i\le n-1$, then $f(x)$ has at most $gcd(ν_p(a_0),n)$ irreducible factors over the field $\mathbb{Q}$ of rational numbers and each irreducible factor has degree at least $n/gcd(ν_p(a_0),n)$.本文的目的是在以下上下文中概括此标准:让$(k,ν)$为一个排名一个离散的有价值字段,$r_ν$其估值环和$ \ Mathbb {f}_ν$其残基字段。假设$ f(x)= ϕ^n(x)+ a_ {n- 1}(x)ϕ^{n-1}(x)+ \ cdot+ cdot+ a_0(x)\ inr_ν[x] $,每个$ i = 0,n-dots,n-1 $,n-1 $,n-1 $,$ a_i(x)在$ \ mathbb {f}_ν[x] $中,r_ν[x] $ inr_ν[x] $中的多项式$ ϕ \不可记录。如果每$ 0 \ le i \ le n-1 $,$nν_p(a_i)\ ge(n-i)ν_p(a_0)> 0 $,}然后,$ f(x)$最​​多具有$ gcd(ν_p(a_0(x)),n),$ gcd(a_0(x),n)$ yourdreducible因素,则是$ k^h $ and $ k^h $ cubifuc trecribuce trecribuc trect trecred trect trect trect trect trect trect in Irred Irred Irred Irred Irred Irred Irred Irred因素$ n/gcd(ν_p(a_0),n)$,其中$ k^h $是$(k,ν)$的henselization。

Jakhar shown that for $f(x)=a_nx^n + a_{n-1}x^{n-1}+\cdot+ a_0$ ($a_0\neq 0$) is a polynomial with rational coefficients, if there exists a prime integer $p$ satisfying $ν_p(a_n)=0$ and $nν_p(a_i)\ge (n-i)ν_p(a_0)> 0$ for every $0\le i\le n-1$, then $f(x)$ has at most $gcd(ν_p(a_0),n)$ irreducible factors over the field $\mathbb{Q}$ of rational numbers and each irreducible factor has degree at least $n/gcd(ν_p(a_0),n)$. The goal of this paper is to generalize this criterion in the following context: Let $(K,ν)$ be a rank one discrete valued field, $R_ν$ its valuation ring and $\mathbb{F}_ν$ its residue field. Assume that $f(x)=ϕ^n(x) + a_{n- 1}(x)ϕ^{n-1}(x)+\cdot+ a_0(x)\in R_ν[x]$, with for every $i=0,\dots,n-1$, $a_i(x)\in R_ν[x]$, and $a_0(x)\neq 0$ for some monic polynomial $ϕ\in R_ν[x]$ with $\overlineϕ$ is irreducible in $\mathbb{F}_ν[x]$. If for every $0\le i\le n-1$, $nν_p(a_i)\ge (n-i)ν_p(a_0)>0$,} then $f(x)$ has at most $gcd(ν_p(a_0(x)),n)$ irreducible factors over the field $K^h$ and so over $K$ and each irreducible factor has degree at least $n/gcd(ν_p(a_0),n)$, where $K^h$ is the henselization of $(K,ν)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源