论文标题

在随机环境中某些观察驱动的模型

Stationarity and ergodic properties for some observation-driven models in random environments

论文作者

Doukhan, Paul, Neumann, Michael H., Truquet, Lionel

论文摘要

本文的第一个动机是研究一般类别的时间序列模型的平稳性和千古特性,定义了在外源协变量过程中有条件的条件。这些模型的动态是由自回归潜在过程给出的,该过程在随机环境中形成了马尔可夫链。与随机环境中马尔可夫链领域的现有贡献相反,状态空间不是离散的,我们不为随机马尔可夫内核使用小型设置类型的假设或统一的收缩条件。我们的假设非常笼统,允许处理不完全合同的模型,例如阈值自回归过程。使用耦合方法,我们研究了在瓦斯恒星度量中的极限的存在,以进行链的向后迭代。我们还得出了相应的偏差马尔可夫链的细阵行特性。我们的结果通过许多在统计或计量经济学中广泛使用的自回归过程的示例(包括GARCH类型过程,计数自动加入和分类时间序列)进行了说明。

The first motivation of this paper is to study stationarity and ergodic properties for a general class of time series models defined conditional on an exogenous covariates process. The dynamic of these models is given by an autoregressive latent process which forms a Markov chain in random environments. Contrarily to existing contributions in the field of Markov chains in random environments, the state space is not discrete and we do not use small set type assumptions or uniform contraction conditions for the random Markov kernels. Our assumptions are quite general and allows to deal with models that are not fully contractive, such as threshold autoregressive processes. Using a coupling approach, we study the existence of a limit, in Wasserstein metric, for the backward iterations of the chain. We also derive ergodic properties for the corresponding skew-product Markov chain. Our results are illustrated with many examples of autoregressive processes widely used in statistics or in econometrics, including GARCH type processes, count autoregressions and categorical time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源