论文标题
非组织间歇性动力学系统的记忆力和力矩界限的丧失
Loss of memory and moment bounds for nonstationary intermittent dynamical systems
论文作者
论文摘要
我们研究非平稳的间歇性动力系统,例如Pomeau-Manneville地图的(确定性)序列的组成。我们证明了两个主要结果:记忆丧失的尖锐界限,包括大量措施的“意外”速度,以及伯克霍夫总和的尖锐矩界,更普遍地说,“单独的Hölder”可观察到。
We study nonstationary intermittent dynamical systems, such as compositions of a (deterministic) sequence of Pomeau-Manneville maps. We prove two main results: sharp bounds on memory loss, including the "unexpected" faster rate for a large class of measures, and sharp moment bounds for Birkhoff sums and, more generally, "separately Hölder" observables.