论文标题
使用传输熵和共同信息从时间序列推断网络属性:多变量与双变量方法的验证
Inferring network properties from time series using transfer entropy and mutual information: validation of multivariate versus bivariate approaches
论文作者
论文摘要
时间序列推断出的功能有效网络是网络神经科学的核心。解释其属性需要推断的网络模型来反映关键的基础结构特征;但是,即使是一些虚假的链接也会扭曲网络度量,具有挑战性的功能连接。我们研究基于相互信息和双变量/多变量转移熵的算法可以推断出潜在网络的微观和宏观特性的程度。该验证是在两个猕猴连接组和具有各种拓扑结构(常规晶格,小世界,随机,无尺度,模块化)的合成网络上执行的。模拟基于神经质量模型和自回旋动力学(采用高斯估计器直接比较功能连通性和Granger因果关系)。我们发现多元传输熵捕获了所有网络的关键属性,以进行更长的时间序列。双变量方法可以实现较短时间序列的更高回忆(灵敏度),但由于可用数据的增加,无法控制误报(较低的特异性)。这会导致高估的聚类,小世界和丰富的俱乐部系数,低估的最短路径长度和集线器中心性以及肥大的度分布尾巴。因此,应在解释通过相关或成对统计依赖度量获得的功能连接组的网络属性时要谨慎,而不是更整体(但渴望数据)的多元模型。
Functional and effective networks inferred from time series are at the core of network neuroscience. Interpreting their properties requires inferred network models to reflect key underlying structural features; however, even a few spurious links can distort network measures, challenging functional connectomes. We study the extent to which micro- and macroscopic properties of underlying networks can be inferred by algorithms based on mutual information and bivariate/multivariate transfer entropy. The validation is performed on two macaque connectomes and on synthetic networks with various topologies (regular lattice, small-world, random, scale-free, modular). Simulations are based on a neural mass model and on autoregressive dynamics (employing Gaussian estimators for direct comparison to functional connectivity and Granger causality). We find that multivariate transfer entropy captures key properties of all networks for longer time series. Bivariate methods can achieve higher recall (sensitivity) for shorter time series but are unable to control false positives (lower specificity) as available data increases. This leads to overestimated clustering, small-world, and rich-club coefficients, underestimated shortest path lengths and hub centrality, and fattened degree distribution tails. Caution should therefore be used when interpreting network properties of functional connectomes obtained via correlation or pairwise statistical dependence measures, rather than more holistic (yet data-hungry) multivariate models.