论文标题
用深神经网络代表周期性功能和确切的周期性边界条件的方法
A Method for Representing Periodic Functions and Enforcing Exactly Periodic Boundary Conditions with Deep Neural Networks
论文作者
论文摘要
我们提出了一种简单有效的方法,用于代表周期性功能并准确地执行使用深神经网络(DNN)求解微分方程的周期性边界条件。该方法源于有关涉及周期功能的功能组成的一些简单属性。它本质上用具有可调(训练)参数的一组独立的周期函数组成了DNN代表性的任意函数。我们区分了两种类型的周期性条件:那些对功能及其所有衍生词(无限订单)施加周期性要求的条件,以及那些对功能及其衍生产品的周期性施加到有限订单$ k $($ k \ geqslant 0 $)上。前者将称为$ c^{\ infty} $周期性条件,后者$ c^{k} $周期性条件。我们定义构成$ c^{\ infty} $周期性层和$ c^k $周期层的操作(对于任何$ k \ geqslant 0 $)。具有$ c^{\ infty} $(或$ c^k $)定期层的深神经网络自动掺入了第二层,并完全满足$ c^{\ infty} $(或$ c^k $)的定期条件。我们在普通和部分微分方程上提供了广泛的数值实验,并具有$ c^{\ infty} $和$ c^k $周期性的边界条件,以验证并证明所提出的方法确实确切地强制了机器的准确性,DNN解决方案及其衍生物的周期性。
We present a simple and effective method for representing periodic functions and enforcing exactly the periodic boundary conditions for solving differential equations with deep neural networks (DNN). The method stems from some simple properties about function compositions involving periodic functions. It essentially composes a DNN-represented arbitrary function with a set of independent periodic functions with adjustable (training) parameters. We distinguish two types of periodic conditions: those imposing the periodicity requirement on the function and all its derivatives (to infinite order), and those imposing periodicity on the function and its derivatives up to a finite order $k$ ($k\geqslant 0$). The former will be referred to as $C^{\infty}$ periodic conditions, and the latter $C^{k}$ periodic conditions. We define operations that constitute a $C^{\infty}$ periodic layer and a $C^k$ periodic layer (for any $k\geqslant 0$). A deep neural network with a $C^{\infty}$ (or $C^k$) periodic layer incorporated as the second layer automatically and exactly satisfies the $C^{\infty}$ (or $C^k$) periodic conditions. We present extensive numerical experiments on ordinary and partial differential equations with $C^{\infty}$ and $C^k$ periodic boundary conditions to verify and demonstrate that the proposed method indeed enforces exactly, to the machine accuracy, the periodicity for the DNN solution and its derivatives.