论文标题
高压特异性热技术,以发现新颖的量子物质状态
High-pressure specific heat technique to uncover novel states of quantum matter
论文作者
论文摘要
AC特异性的热量测量仍然是基础小样品中的最重要的热力学实验方法。然而,在高压,非常低的温度和强烈磁场的联合极端条件下,其性能需要广泛扩展,以研究在强相关的电子系统中的量子相变。在此通信中,我们通过在极端条件下应用AC特异性热技术来讨论量子promagnetic $ - $绝缘子Srcu $ _ {2} $(BO $ _ {3} $)$ _ {2} $的确定确定特定热量的确定。为了应用这种技术来绝缘样品,我们将金属薄膜 - 薄膜 - 装饰物和连接的温度计溅到样品上。除此之外,我们进行了全频扫描,目的是获得定量的特定热数据。我们的结果表明,对于绝热技术,我们可以在准确性的5 $ \%$之内确定样品热容量。这允许揭示表征量子旋转纠缠基底状态的低能尺度,以srcu $ _ {2} $(bo $ _ {3} $)$ _ {2} $。
AC-specific heat measurements remain as the foremost thermodynamic experimental method to underpin phase transitions in tiny samples. However, its performance under combined extreme conditions of high-pressure, very low temperature and intense magnetic fields needs to be broadly extended for investigation of quantum phase transition in strongly correlated electron systems. In this communication, we discuss the determination of specific heat on the quantum paramagnetic$-$insulator SrCu$_{2}$(BO$_{3}$)$_{2}$ by applying the AC-specific heat technique under extreme conditions. In order to apply this technique to insulating samples we sputtered a metallic thin film-heater and attached thermometer onto sample. Besides that, we performed full frequency scans with the aim to get quantitative specific heat data. Our results show that we can determine the sample heat capacity within 5$\%$ of accuracy respect to an adiabatic technique. This allows to uncover low energy scales that characterize the ground state of quantum spin entanglement in SrCu$_{2}$(BO$_{3}$)$_{2}$.