论文标题

流概率深张量分解

Streaming Probabilistic Deep Tensor Factorization

论文作者

Fang, Shikai, Wang, Zheng, Pan, Zhimeng, Liu, Ji, Zhe, Shandian

论文摘要

尽管现有的张量分解方法成功了,但其中大多数进行了多线性分解,并且很少利用强大的建模框架(例如深神经网络)来捕获数据中的各种复杂的相互作用。更重要的是,对于高度表现力,深层分解,我们缺乏处理流数据的有效方法,而流媒体数据在现实世界中无处不在。为了解决这些问题,我们提出了蜘蛛,这是一种流概率的深度张力分解方法。我们首先使用贝叶斯神经网络(NNS)来构建深张量分解模型。我们在NN重量上进行了先前的尖峰和单打,以鼓励稀疏性并防止过度拟合。然后,我们使用泰勒的扩展和力矩匹配来近似NN输出的后部并计算运行模型证据,基于我们在假定的密度过滤和期望传播框架中开发有效的流中推理算法。我们的算法在接收新的张量输入后,为潜在因素和NN权重的后部提供了响应式增量更新,同时选择并抑制冗余/无用的权重。我们在四个现实世界应用中展示了我们方法的优势。

Despite the success of existing tensor factorization methods, most of them conduct a multilinear decomposition, and rarely exploit powerful modeling frameworks, like deep neural networks, to capture a variety of complicated interactions in data. More important, for highly expressive, deep factorization, we lack an effective approach to handle streaming data, which are ubiquitous in real-world applications. To address these issues, we propose SPIDER, a Streaming ProbabilistIc Deep tEnsoR factorization method. We first use Bayesian neural networks (NNs) to construct a deep tensor factorization model. We assign a spike-and-slab prior over the NN weights to encourage sparsity and prevent overfitting. We then use Taylor expansions and moment matching to approximate the posterior of the NN output and calculate the running model evidence, based on which we develop an efficient streaming posterior inference algorithm in the assumed-density-filtering and expectation propagation framework. Our algorithm provides responsive incremental updates for the posterior of the latent factors and NN weights upon receiving new tensor entries, and meanwhile select and inhibit redundant/useless weights. We show the advantages of our approach in four real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源