论文标题
Type $ b $ permutohedron和间隔的poset作为tchebyshev变换
The type $B$ permutohedron and the poset of intervals as a Tchebyshev transform
论文作者
论文摘要
我们表明,通过包含序列的Poset间隔的阶络合物是对原始Poset阶络合物的Tchebyshev三角剖分。除了研究这种转换的特性外,我们还表明,$ b $ permutohedron型的双重二元组合等同于悬浮布尔代数的间隔的序列复合体(除去了最小和最大元素)。
We show that the order complex of intervals of a poset, ordered by inclusion, is a Tchebyshev triangulation of the order complex of the original poset. Besides studying the properties of this transformation, we show that the dual of the type $B$ permutohedron is combinatorially equivalent to the suspension of the order complex of the poset of intervals of a Boolean algebra (with the minimum and maximum elements removed).