论文标题

TinyVirat:低分辨率视频动作识别

TinyVIRAT: Low-resolution Video Action Recognition

论文作者

Demir, Ugur, Rawat, Yogesh S, Shah, Mubarak

论文摘要

现有的行动识别研究主要集中在该动作明显可见的高质量视频上。在实际监视环境中,视频中的动作以各种决议捕获。大多数活动都与小分辨率的距离发生,并且认识到此类活动是一个具有挑战性的问题。在这项工作中,我们专注于识别视频中的微小动作。我们引入了一个基准数据集TinyVirat,其中包含自然的低分辨率活动。 TinyVirat视频中的动作具有多个标签,并且是从监视视频中提取的,这使它们变得现实和更具挑战性。我们提出了一种新的方法来识别视频中的微小动作,该视频利用一种渐进的生成方法来提高低分辨率动作的质量。所提出的方法还包括一个较弱的注意力机制,有助于专注于视频中的活动区域。我们执行广泛的实验来基准提出的TinyVirat数据集,并观察到所提出的方法显着提高了基准的动作识别性能。我们还评估了对合成大小的动作识别数据集的提议方法,并与现有方法相比获得了最先进的结果。该数据集和代码可在https://github.com/ugurdemir/tiny-virat上公开获取。

The existing research in action recognition is mostly focused on high-quality videos where the action is distinctly visible. In real-world surveillance environments, the actions in videos are captured at a wide range of resolutions. Most activities occur at a distance with a small resolution and recognizing such activities is a challenging problem. In this work, we focus on recognizing tiny actions in videos. We introduce a benchmark dataset, TinyVIRAT, which contains natural low-resolution activities. The actions in TinyVIRAT videos have multiple labels and they are extracted from surveillance videos which makes them realistic and more challenging. We propose a novel method for recognizing tiny actions in videos which utilizes a progressive generative approach to improve the quality of low-resolution actions. The proposed method also consists of a weakly trained attention mechanism which helps in focusing on the activity regions in the video. We perform extensive experiments to benchmark the proposed TinyVIRAT dataset and observe that the proposed method significantly improves the action recognition performance over baselines. We also evaluate the proposed approach on synthetically resized action recognition datasets and achieve state-of-the-art results when compared with existing methods. The dataset and code is publicly available at https://github.com/UgurDemir/Tiny-VIRAT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源