论文标题

alpha-net:体系结构,模型和应用程序

Alpha-Net: Architecture, Models, and Applications

论文作者

Shaikh, Jishan, Sharma, Adya, Chouhan, Ankit, Mahawar, Avinash

论文摘要

深度学习网络培训通常在计算上很昂贵且直观地复杂。我们提出了一种新颖的网络体系结构,用于定制培训和权重评估。我们将图层重新制定为带有相似块的块,并具有自己的某些输入和输出,它们的连接配置上的块(称为alpha块)形成了自己的网络,并结合了我们的新颖损耗功能和归一化功能,形成了完整的Alpha-net架构。我们提供了网络损耗函数的经验数学公式,以更多地了解准确性估计和进一步的优化。我们用4种不同的图层配置实现了alpha-net,以全面表达体系结构行为。在基于Imagenet基准测试的自定义数据集上,我们评估了Alpha-Net V1,V2,V3和V4的图像识别,以分别为78.2%,79.1%,79.5%和78.3%的精度。 alpha-net V3的精度提高了约。在ImageNet基准测试上的最后一个最新网络重新网络50中,3%。我们还用256、512和1024层以及损耗函数的不同版本对数据集进行了分析。输入表示对于培训也至关重要,因为初始预处理只会占用少数功能,即可使训练的复杂程度不如所需的。我们还将网络行为具有不同的层结构,不同的损耗函数以及不同的归一化函数,以更好地定量α-net。

Deep learning network training is usually computationally expensive and intuitively complex. We present a novel network architecture for custom training and weight evaluations. We reformulate the layers as ResNet-similar blocks with certain inputs and outputs of their own, the blocks (called Alpha blocks) on their connection configuration form their own network, combined with our novel loss function and normalization function form the complete Alpha-Net architecture. We provided the empirical mathematical formulation of network loss function for more understanding of accuracy estimation and further optimizations. We implemented Alpha-Net with 4 different layer configurations to express the architecture behavior comprehensively. On a custom dataset based on ImageNet benchmark, we evaluate Alpha-Net v1, v2, v3, and v4 for image recognition to give the accuracy of 78.2%, 79.1%, 79.5%, and 78.3% respectively. The Alpha-Net v3 gives improved accuracy of approx. 3% over the last state-of-the-art network ResNet 50 on ImageNet benchmark. We also present an analysis of our dataset with 256, 512, and 1024 layers and different versions of the loss function. Input representation is also crucial for training as initial preprocessing will take only a handful of features to make training less complex than it needs to be. We also compared network behavior with different layer structures, different loss functions, and different normalization functions for better quantitative modeling of Alpha-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源