论文标题

centernet3d:点云的无锚对象检测器

CenterNet3D: An Anchor Free Object Detector for Point Cloud

论文作者

Wang, Guojun, Wu, Jian, Tian, Bin, Teng, Siyu, Chen, Long, Cao, Dongpu

论文摘要

从点云中准确而快速的3D对象检测是自动驾驶中的关键任务。现有的一阶段3D对象检测方法可以实现实时性能,但是,它们由基于锚的检测器主导,这些检测器效率低下并且需要其他后处理。在本文中,我们消除了锚点并将对象建模为单个点 - 其边界框的中心点。基于中心点,我们提出了一个无锚的Centernet3D网络,该网络无锚进行3D对象检测。我们的CentErnet3D使用按键估算来查找中心点并直接回归3D边界框。但是,由于点云的固有稀疏性,3D对象中心点很可能位于空白空间中,这使得难以估计准确的边界。为了解决此问题,我们提出了一个额外的角落注意模块,以强制执行CNN骨架,以更加关注对象边界。此外,考虑到一个阶段探测器遭受了预测的边界框与相应的分类信心之间的不一致之际,我们开发了有效的关键关键敏感的翘曲操作,以使人们对预测的边界框保持一致。我们提出的Centernet3d是非最大抑制作用的,这使其更有效,更简单。我们在广泛使用的Kitti数据集和更具挑战性的Nuscenes数据集上评估Centernet3d。我们的方法的表现优于所有基于最新的基于锚的一阶段方法,并且具有与两阶段方法相当的性能。它的推理速度为20 fps,并实现了最佳的速度和准确性权衡。我们的源代码将在https://github.com/wangguojun2018/centernet3d上发布。

Accurate and fast 3D object detection from point clouds is a key task in autonomous driving. Existing one-stage 3D object detection methods can achieve real-time performance, however, they are dominated by anchor-based detectors which are inefficient and require additional post-processing. In this paper, we eliminate anchors and model an object as a single point--the center point of its bounding box. Based on the center point, we propose an anchor-free CenterNet3D network that performs 3D object detection without anchors. Our CenterNet3D uses keypoint estimation to find center points and directly regresses 3D bounding boxes. However, because inherent sparsity of point clouds, 3D object center points are likely to be in empty space which makes it difficult to estimate accurate boundaries. To solve this issue, we propose an extra corner attention module to enforce the CNN backbone to pay more attention to object boundaries. Besides, considering that one-stage detectors suffer from the discordance between the predicted bounding boxes and corresponding classification confidences, we develop an efficient keypoint-sensitive warping operation to align the confidences to the predicted bounding boxes. Our proposed CenterNet3D is non-maximum suppression free which makes it more efficient and simpler. We evaluate CenterNet3D on the widely used KITTI dataset and more challenging nuScenes dataset. Our method outperforms all state-of-the-art anchor-based one-stage methods and has comparable performance to two-stage methods as well. It has an inference speed of 20 FPS and achieves the best speed and accuracy trade-off. Our source code will be released at https://github.com/wangguojun2018/CenterNet3d.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源