论文标题
加权高斯单纯形的体积分布
Distribution of the Volume of Weighted Gaussian Simplex
论文作者
论文摘要
令$ x_0,\ ldots,x_l $为$ \ mathbb {r}^d $中的独立标准高斯矢量,使得$ l \ leqslant d $。我们得出了一个明确的公式,用于无原始的加权高斯单纯形量的分布 - $ l $ - 二维单纯$ \ mathrm {cons}(σ_0x_0,\ ldots,σ_lx_l)$($σ_0,\σ_0,\ ldots,\ ldots,x_l> 0 $)。
Let $X_0, \ldots, X_l$ be independent standard Gaussian vectors in $\mathbb{R}^d$ such that $l \leqslant d$. We derive an explicit formula for the distribution of the volume of weighted Gaussian simplex without the origin -- $l$-dimensional simplex $\mathrm{conv}(σ_0X_0, \ldots, σ_lX_l)$ ($σ_0, \ldots, σ_l > 0$).