论文标题

基于小波的双分支网络用于图像示例

Wavelet-Based Dual-Branch Network for Image Demoireing

论文作者

Liu, Lin, Liu, Jianzhuang, Yuan, Shanxin, Slabaugh, Gregory, Leonardis, Ales, Zhou, Wengang, Tian, Qi

论文摘要

当使用智能手机摄像机拍摄数字屏幕的照片时,通常会产生Moire模式,从而严重降低照片质量。在本文中,我们设计了一个基于小波的双分支网络(WDNET),其空间注意机制用于图像示例。在RGB域中起作用的现有图像恢复方法难以区分Moire模式和真实场景纹理。与这些方法不同,我们的网络删除了小波域中的Moire模式,以将Moire模式的频率与图像内容分开。该网络结合了密集的卷积模块和支持大型接收场的扩张卷积模块。广泛的实验证明了我们方法的有效性,我们进一步表明,WDNET概括以消除非屏幕图像上的Moire伪影。尽管专为图像示例设计,但WDNET已应用于其他两个低级别的任务,在Rain100h和Raindrop800数据集上的最先进的图像deraining和Derain-Drop方法表现优于最先进的图像。

When smartphone cameras are used to take photos of digital screens, usually moire patterns result, severely degrading photo quality. In this paper, we design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image demoireing. Existing image restoration methods working in the RGB domain have difficulty in distinguishing moire patterns from true scene texture. Unlike these methods, our network removes moire patterns in the wavelet domain to separate the frequencies of moire patterns from the image content. The network combines dense convolution modules and dilated convolution modules supporting large receptive fields. Extensive experiments demonstrate the effectiveness of our method, and we further show that WDNet generalizes to removing moire artifacts on non-screen images. Although designed for image demoireing, WDNet has been applied to two other low-levelvision tasks, outperforming state-of-the-art image deraining and derain-drop methods on the Rain100h and Raindrop800 data sets, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源