论文标题
无处不在的$ \ rm nh_3 $ supersonic组件在L1688相干核心
Ubiquitous $\rm NH_3$ supersonic component in L1688 coherent cores
论文作者
论文摘要
上下文:恒星形成发生在分子云中的冷致密芯中。较早的观察结果发现,致密的核心表现出亚音速非热速度分散体。相比之下,CO观察表明,环境大规模云更加温暖,具有超音速速度分散。目的:我们旨在研究氨($ \ rm nh_3 $)分子线谱,对L1688中的相干核心具有精致的敏感性,以便以前所未有的细节研究其运动学性质。方法:我们在绿色银行氨调查(GAS)中使用了$ \ rm NH_3 $(1,1)和(2,2)数据。与DR1地图相比,我们首先将数据平滑至更大的1',以获得速度分散和动力学温度的扩展图。然后,我们确定了云中的相干核心,并分析了对岩心的平均线轮廓。结果:我们第一次检测到一个微弱的(平均$ \ rm nh_3 $(1,1)峰亮度$ <$ <$ <$ 0.25 k in $ t_ {mb} $),对L1688中所有相干核心的超音速组件。我们安装了两个组件,一个宽和一个狭窄,并得出了每个组件的动力学温度和速度分散。对所有内核的广泛组件都具有超音速线宽($ \ MATHCAL {M} _S \ GE 1 $)。该组件将狭窄的密度核心组件速度色散的估计值降低约28%,而动力学温度的估计平均为$ \ $ \ $ \ $ 10%,而单一组件拟合的结果。结论:忽略这种无处不在的广泛成分对所有相干核心的存在会导致典型的单组分拟合,从而高估了温度和速度分散体。这影响了从$ \ rm nh_3 $观测值估计的核心的详细物理结构和稳定性。
Context : Star formation takes place in cold dense cores in molecular clouds. Earlier observations have found that dense cores exhibit subsonic non-thermal velocity dispersions. In contrast, CO observations show that the ambient large-scale cloud is warmer and has supersonic velocity dispersions. Aims : We aim to study the ammonia ($\rm NH_3$) molecular line profiles with exquisite sensitivity towards the coherent cores in L1688 in order to study their kinematical properties in unprecedented detail. Methods : We used $\rm NH_3$ (1,1) and (2,2) data from the first data release (DR1) in the Green Bank Ammonia Survey (GAS). We first smoothed the data to a larger beam of 1' to obtain substantially more extended maps of velocity dispersion and kinetic temperature, compared to the DR1 maps. We then identified the coherent cores in the cloud and analysed the averaged line profiles towards the cores. Results : For the first time, we detected a faint (mean $\rm NH_3$(1,1) peak brightness $<$0.25 K in $T_{MB}$), supersonic component towards all the coherent cores in L1688. We fitted two components, one broad and one narrow, and derived the kinetic temperature and velocity dispersion of each component. The broad components towards all cores have supersonic linewidths ($\mathcal{M}_S \ge 1$). This component biases the estimate of the narrow dense core component's velocity dispersion by $\approx$28% and the kinetic temperature by $\approx$10%, on average, as compared to the results from single-component fits. Conclusions : Neglecting this ubiquitous presence of a broad component towards all coherent cores causes the typical single-component fit to overestimate the temperature and velocity dispersion. This affects the derived detailed physical structure and stability of the cores estimated from $\rm NH_3$ observations.