论文标题

有向图中的组件订单连接性

Component Order Connectivity in Directed Graphs

论文作者

Bang-Jensen, J., Eiben, E., Gutin, G., Wahlstrom, M., Yeo, A.

论文摘要

如果每对$ x,y $的顶点为$ d,$在$ x $ y和$ y之间至少有一个弧线。是否有一个$ v $的子集$ x $ v $ size $ k $,以使$ d-x $中最大的强连接组件最多具有$ \ ell $ vertices。请注意,DCOC减少了$ \ ell = 1的有向反馈顶点集问题。特别是,我们证明,在半完整的挖掘中使用参数$ k $的DCOC可以在时间$ o^*(2^{16k})$中求解,但不能在时间$ o^*(2^{o(k)})$中求解,除非指数时间假设(enth)失败。 \ gutin {上限$ o^*(2^{16K})$表示参数$ n- \ ell的上限$ o^*(2^{16(n- \ ell)})$。我们改进\ vial {((在$ \ ell $上依赖$ \ ell $)} g {Ö} ke,Marx and Mnich(2019)的上限,dcoc与$ o^*(k \ ell \ log(k \ ell)$ o^*^of参数$ \ ell+k $的时间复杂性与参数$ \ ell+k $ in $ o^*(k \ e \ ell)$(k o) (k \ ell))})。 $ o^*(2^{o(k \ log k)})。$

A directed graph $D$ is semicomplete if for every pair $x,y$ of vertices of $D,$ there is at least one arc between $x$ and $y.$ \viol{Thus, a tournament is a semicomplete digraph.} In the Directed Component Order Connectivity (DCOC) problem, given a digraph $D=(V,A)$ and a pair of natural numbers $k$ and $\ell$, we are to decide whether there is a subset $X$ of $V$ of size $k$ such that the largest strong connectivity component in $D-X$ has at most $\ell$ vertices. Note that DCOC reduces to the Directed Feedback Vertex Set problem for $\ell=1.$ We study parametered complexity of DCOC for general and semicomplete digraphs with the following parameters: $k, \ell,\ell+k$ and $n-\ell$. In particular, we prove that DCOC with parameter $k$ on semicomplete digraphs can be solved in time $O^*(2^{16k})$ but not in time $O^*(2^{o(k)})$ unless the Exponential Time Hypothesis (ETH) fails. \gutin{The upper bound $O^*(2^{16k})$ implies the upper bound $O^*(2^{16(n-\ell)})$ for the parameter $n-\ell.$ We complement the latter by showing that there is no algorithm of time complexity $O^*(2^{o({n-\ell})})$ unless ETH fails.} Finally, we improve \viol{(in dependency on $\ell$)} the upper bound of G{ö}ke, Marx and Mnich (2019) for the time complexity of DCOC with parameter $\ell+k$ on general digraphs from $O^*(2^{O(k\ell\log (k\ell))})$ to $O^*(2^{O(k\log (k\ell))}).$ Note that Drange, Dregi and van 't Hof (2016) proved that even for the undirected version of DCOC on split graphs there is no algorithm of running time $O^*(2^{o(k\log \ell)})$ unless ETH fails and it is a long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time complexity $O^*(2^{o(k\log k)}).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源