论文标题

商业建筑的基于预测的负载管理方法 - 比较LSTM和标准化的负载资料技术

A Forecast Based Load Management Approach For Commercial Buildings -- Comparing LSTM And Standardized Load Profile Techniques

论文作者

Steens, Thomas, Telle, Jan-Simon, Hanke, Benedikt, von Maydell, Karsten, Agert, Carsten, di Modica, Gian-Luca, Engel, Bernd, Grottke, Matthias

论文摘要

负载造成的问题已经通过不同的方法,粒度和目标来广泛解决。最近的研究不仅侧重于深度学习方法,还关注单个建筑水平上的预测负载。这项研究旨在通过使用不同的负载预测技术来管理负载来研究问题和可能性。为此,通过使用滑动窗口预测方法分析和评估了两个神经网络,长期的短期记忆和进食两种统计方法,标准化的负载概况和个性化的标准化负载剖面。结果表明,机器学习算法的好处是能够适应新模式,而个性化的标准化负载配置文件的性能类似于测试的深度学习算法。作为评估能源管理系统应用程序应用程序支持的支持的案例研究,通过使用负载预测来安排充电程序,可以模拟充电站将充电站集成到现有建筑物中的案例研究。它表明,与不受控制的充电相比,这种系统可以导致较低的负载峰,超过定义的网格极限,并且超负荷的数量较低。

Load-forecasting problems have already been widely addressed with different approaches, granularities and objectives. Recent studies focus not only on deep learning methods but also on forecasting loads on single building level. This study aims to research problems and possibilities arising by using different load forecasting techniques to manage loads. For that the behaviour of two neural networks, Long Short-Term Memory and Feed Forward Neural Network and two statistical methods, standardized load profiles and personalized standardized load profiles are analysed and assessed by using a sliding-window forecast approach. The results show that machine learning algorithms have the benefit of being able to adapt to new patterns, whereas the personalized standardized load profile performs similar to the tested deep learning algorithms on the metrics. As a case study for evaluating the support of load-forecasting for applications in Energy management systems, the integration of charging stations into an existing building is simulated by using load forecasts to schedule the charging procedures. It shows that such a system can lead to significantly lower load peaks, exceeding a defined grid limit, and to a lower number of overloads compared to uncontrolled charging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源