论文标题
无方程贴片方案,可通过自动偶联耦合进行有效的计算均质化
Equation-free patch scheme for efficient computational homogenisation via self-adjoint coupling
论文作者
论文摘要
无方程式宏观模型是一种系统,严格的计算方法,用于在所需的宏观系统级别上有效预测微观系统的动力学。在此方案中,给定的显微镜模型是在分布在整个时空域中的小斑块中计算的,贴片耦合条件桥接了未模拟的空间。为了进行准确的模拟,必须在设计贴片耦合条件时要注意。在这里,我们构建了新型的耦合条件,这些条件可以保留平移不变性,旋转不变性和自动化对称性,从而确保与这些对称性相关的保护定律保留在宏观仿真中。在一个维度和二维中对拟议方案的光谱和代数分析揭示了进一步提高模拟准确性的机制。贴片方案的宏观动力学与原始微观模型的一致性已证明。这种新的自我伴侣补丁方案为科学家和工程师感兴趣的多种多尺度方案提供了有效,灵活和准确的计算均质化。
Equation-free macroscale modelling is a systematic and rigorous computational methodology for efficiently predicting the dynamics of a microscale system at a desired macroscale system level. In this scheme, the given microscale model is computed in small patches spread across the space-time domain, with patch coupling conditions bridging the unsimulated space. For accurate simulations, care must be taken in designing the patch coupling conditions. Here we construct novel coupling conditions which preserve translational invariance, rotational invariance, and self-adjoint symmetry, thus guaranteeing that conservation laws associated with these symmetries are preserved in the macroscale simulation. Spectral and algebraic analyses of the proposed scheme in both one and two dimensions reveal mechanisms for further improving the accuracy of the simulations. Consistency of the patch scheme's macroscale dynamics with the original microscale model is proved. This new self-adjoint patch scheme provides an efficient, flexible, and accurate computational homogenisation in a wide range of multiscale scenarios of interest to scientists and engineers.