论文标题
使用LongPath的量子电路的2D量子位置
2D Qubit Placement of Quantum Circuits using LONGPATH
论文作者
论文摘要
为了超过常规的经典计算,以查找计算困难问题的解决方案,引入了量子计算。可以在伪量子环境中模拟量子算法,但实施涉及通过量子门的物理合成来实现量子电路。这需要将复杂的量子门分解为一个简单的一个值和两个Qubit大门的级联。物理合成的方法学框架对操作数(Qubits)和操作员的放置施加了限制。如果可以将物理Qubit放在网格上,该网格的每个节点代表一个量子,则只能在相邻的量子位上操作量子门,否则必须插入交换门以将非线性最近的邻居结构转换为线性邻居架构。插入交换门的插入应最佳,以减少物理实施的累积成本。安排和路由APRIORI与实际实施需要一个时间表布局。在本文中,提出了两种算法来优化任何任意量子电路中的交换门数。第一种算法旨在从生成相互作用图开始,然后找到从最大程度开始的节点开始的最长路径。第二个算法优化了任何一对非邻居量子位之间的交换门数。我们提出的方法在1D和2D NTC体系结构中的交换门数量显着减少。
In order to achieve speedup over conventional classical computing for finding solution of computationally hard problems, quantum computing was introduced. Quantum algorithms can be simulated in a pseudo quantum environment, but implementation involves realization of quantum circuits through physical synthesis of quantum gates. This requires decomposition of complex quantum gates into a cascade of simple one qubit and two qubit gates. The methodological framework for physical synthesis imposes a constraint regarding placement of operands (qubits) and operators. If physical qubits can be placed on a grid, where each node of the grid represents a qubit then quantum gates can only be operated on adjacent qubits, otherwise SWAP gates must be inserted to convert non-Linear Nearest Neighbor architecture to Linear Nearest Neighbor architecture. Insertion of SWAP gates should be made optimal to reduce cumulative cost of physical implementation. A schedule layout generation is required for placement and routing apriori to actual implementation. In this paper, two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit. The first algorithm is intended to start with generation of an interaction graph followed by finding the longest path starting from the node with maximum degree. The second algorithm optimizes the number of SWAP gates between any pair of non-neighbouring qubits. Our proposed approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.