论文标题
使用FNIRS的会话和受试者之间的稳健工作负载级别对齐的域适应
Domain Adaptation for Robust Workload Level Alignment Between Sessions and Subjects using fNIRS
论文作者
论文摘要
意义:我们证明了在功能近红外光谱(FNIRS)数据上使用域适应性的潜力,以对涉及工作记忆的不同级别的N背包任务进行分类。目的:FNIRS数据中的域移位是不同实验会议和受试者的工作负载级别对齐中的挑战。为了解决这一问题,使用了两种域适应方法-Gromov-Wasserstein(G-W)和Fused Gromov-Wasserstein(FG-W)。方法:具体来说,我们使用了一个会话或一个主题的标记数据,以在另一个会话(在同一主题中)或另一个主题中对试验进行分类。我们将G-W应用于会话逐级对齐和FG-W,以逐拟主的对齐方式,以在不同的N-BACK任务级别中获取的FNIRS数据。我们将这些方法与三种监督方法进行了比较:多类支持向量机(SVM),卷积神经网络(CNN)和经常性神经网络(RNN)。结果:在六个受试者的样本中,G-W的一比对准确性为68 $ \ pm $ 4%(加权平均$ \ pm $标准错误),逐段对齐,FG-W导致对象准确度的比对准确性为55 $ \ pm $ 2%,$ 2%。在每种情况下,准确性25%代表机会。 G-W和FG-W产生的对齐精度明显大于SVM,CNN和RNN的比对精度。我们还表明,从FNIRS数据中删除运动伪影在改善对齐性能中起重要作用。结论:通过使用FNIRS数据,域的适应性有可能逐性和主体对齐的心理工作负载。
Significance: We demonstrated the potential of using domain adaptation on functional Near-Infrared Spectroscopy (fNIRS) data to classify different levels of n-back tasks that involve working memory. Aim: Domain shift in fNIRS data is a challenge in the workload level alignment across different experiment sessions and subjects. In order to address this problem, two domain adaptation approaches -- Gromov-Wasserstein (G-W) and Fused Gromov-Wasserstein (FG-W) were used. Approach: Specifically, we used labeled data from one session or one subject to classify trials in another session (within the same subject) or another subject. We applied G-W for session-by-session alignment and FG-W for subject-by-subject alignment to fNIRS data acquired during different n-back task levels. We compared these approaches with three supervised methods: multi-class Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). Results: In a sample of six subjects, G-W resulted in an alignment accuracy of 68 $\pm$ 4 % (weighted mean $\pm$ standard error) for session-by-session alignment, FG-W resulted in an alignment accuracy of 55 $\pm$ 2 % for subject-by-subject alignment. In each of these cases, 25 % accuracy represents chance. Alignment accuracy results from both G-W and FG-W are significantly greater than those from SVM, CNN and RNN. We also showed that removal of motion artifacts from the fNIRS data plays an important role in improving alignment performance. Conclusions: Domain adaptation has potential for session-by-session and subject-by-subject alignment of mental workload by using fNIRS data.