论文标题
用于定期驱动弱相互作用的费米的浮动扰动理论
A Floquet perturbation theory for periodically driven weakly-interacting fermions
论文作者
论文摘要
我们使用Floquet扰动理论(FPT)来计算floquet hamilton $ h_f $,用于连续周期性驱动的虚弱相互作用的费米,相互作用振幅为扰动参数。这使我们能够在中间驱动频率下解决系统的动力学,$ \ hbarω_d\ ge v_0 \ ll {\ Mathcal j} _0 $,其中$ {\ Mathcal j} _0 $是动力学术语的振幅,$ω_d$是驱动器频率和$ v_0 $之间的univestion unctial of distions untestion untactial untactial。对于随机初始状态,我们计算了使用$ H_F $获得的驱动周期后的波置$ f $,并使用精确的对角线化获得的驱动周期(ED)。我们发现,与$ v_0 \ le \ hbarω_d$和$ v_0 \ ll {\ Mathcal J} _0 $相比,与其Magnus对应物相比,FPT的$ F $的值大大更大。我们使用获得的$ H_F $来研究弱相互作用的费米链的稳态性质;我们发现广泛的$ω_d$可导致有限链的次热或超热稳态。驱动的费米子链显示出$ v_0 = 0 $的完美动力学定位;我们解决了在有限相互作用链的稳定状态下这种动态定位的命运,并表明局部和离域稳态之间存在分频器。我们讨论了我们的结果对热力学大型链的影响,并列出了可以测试我们理论的实验。
We compute the Floquet Hamiltonian $H_F$ for weakly interacting fermions subjected to a continuous periodic drive using a Floquet perturbation theory (FPT) with the interaction amplitude being the perturbation parameter. This allows us to address the dynamics of the system at intermediate drive frequencies $\hbar ω_D \ge V_0 \ll {\mathcal J}_0$, where ${\mathcal J}_0$ is the amplitude of the kinetic term, $ω_D$ is the drive frequency, and $V_0$ is the typical interaction strength between the fermions. We compute, for random initial states, the fidelity $F$ between wavefunctions after a drive cycle obtained using $H_F$ and that obtained using exact diagonalization (ED). We find that FPT yields a substantially larger value of $F$ compared to its Magnus counterpart for $V_0\le \hbar ω_D$ and $V_0\ll {\mathcal J}_0$. We use the $H_F$ obtained to study the nature of the steady state of an weakly interacting fermion chain; we find a wide range of $ω_D$ which leads to subthermal or superthermal steady states for finite chains. The driven fermionic chain displays perfect dynamical localization for $V_0=0$; we address the fate of this dynamical localization in the steady state of a finite interacting chain and show that there is a crossover between localized and delocalized steady states. We discuss the implication of our results for thermodynamically large chains and chart out experiments which can test our theory.