论文标题

用于定期驱动弱相互作用的费米的浮动扰动理论

A Floquet perturbation theory for periodically driven weakly-interacting fermions

论文作者

Ghosh, Roopayan, Mukherjee, Bhaskar, Sengupta, K.

论文摘要

我们使用Floquet扰动理论(FPT)来计算floquet hamilton $ h_f $,用于连续周期性驱动的虚弱相互作用的费米,相互作用振幅为扰动参数。这使我们能够在中间驱动频率下解决系统的动力学,$ \ hbarω_d\ ge v_0 \ ll {\ Mathcal j} _0 $,其中$ {\ Mathcal j} _0 $是动力学术语的振幅,$ω_d$是驱动器频率和$ v_0 $之间的univestion unctial of distions untestion untactial untactial。对于随机初始状态,我们计算了使用$ H_F $获得的驱动周期后的波置$ f $,并使用精确的对角线化获得的驱动周期(ED)。我们发现,与$ v_0 \ le \ hbarω_d$和$ v_0 \ ll {\ Mathcal J} _0 $相比,与其Magnus对应物相比,FPT的$ F $的值大大更大。我们使用获得的$ H_F $来研究弱相互作用的费米链的稳态性质;我们发现广泛的$ω_d$可导致有限链的次热或超热稳态。驱动的费米子链显示出$ v_0 = 0 $的完美动力学定位;我们解决了在有限相互作用链的稳定状态下这种动态定位的命运,并表明局部和离域稳态之间存在分频器。我们讨论了我们的结果对热力学大型链的影响,并列出了可以测试我们理论的实验。

We compute the Floquet Hamiltonian $H_F$ for weakly interacting fermions subjected to a continuous periodic drive using a Floquet perturbation theory (FPT) with the interaction amplitude being the perturbation parameter. This allows us to address the dynamics of the system at intermediate drive frequencies $\hbar ω_D \ge V_0 \ll {\mathcal J}_0$, where ${\mathcal J}_0$ is the amplitude of the kinetic term, $ω_D$ is the drive frequency, and $V_0$ is the typical interaction strength between the fermions. We compute, for random initial states, the fidelity $F$ between wavefunctions after a drive cycle obtained using $H_F$ and that obtained using exact diagonalization (ED). We find that FPT yields a substantially larger value of $F$ compared to its Magnus counterpart for $V_0\le \hbar ω_D$ and $V_0\ll {\mathcal J}_0$. We use the $H_F$ obtained to study the nature of the steady state of an weakly interacting fermion chain; we find a wide range of $ω_D$ which leads to subthermal or superthermal steady states for finite chains. The driven fermionic chain displays perfect dynamical localization for $V_0=0$; we address the fate of this dynamical localization in the steady state of a finite interacting chain and show that there is a crossover between localized and delocalized steady states. We discuss the implication of our results for thermodynamically large chains and chart out experiments which can test our theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源