论文标题
FOCUSLITENN:数字病理的高效焦点质量评估
FocusLiteNN: High Efficiency Focus Quality Assessment for Digital Pathology
论文作者
论文摘要
数字病理学中的焦点显微镜镜头是高通量全幻灯片图像(WSI)扫描平台中的关键瓶颈,对于该平台,对于该平台,像素级自动焦点质量评估(FQA)方法是非常可取的,可以有助于显着加速临床工作表。现有的FQA方法包括知识驱动和数据驱动的方法。尽管基于卷积神经网络(CNN)方法等数据驱动的方法表现出了巨大的承诺,但由于其高计算复杂性和缺乏可传递性,因此很难在实践中使用它们。在这里,我们提出了一个基于CNN的高效模型,该模型维护类似于知识驱动方法的快速计算,而没有过多的硬件要求,例如GPU。我们使用FocusPath创建了一个训练数据集,该数据集涵盖了跨九种不同的染色颜色的各种组织滑梯,在这种颜色中,污渍多样性极大地帮助模型学习了各种色彩谱和组织结构。为了降低CNN的复杂性,我们惊讶地发现,即使将CNN缩小到最低水平,它仍然取得了高度竞争的表现。我们介绍了一个新颖的综合评估数据集,这是同类数据集中最大的,从TCGA存储库进行了注释和编译,以进行模型评估和比较,与现有的知识驱动和数据驱动的FQA方法相比,提出的方法在其上表现出了卓越的精确速度权衡。
Out-of-focus microscopy lens in digital pathology is a critical bottleneck in high-throughput Whole Slide Image (WSI) scanning platforms, for which pixel-level automated Focus Quality Assessment (FQA) methods are highly desirable to help significantly accelerate the clinical workflows. Existing FQA methods include both knowledge-driven and data-driven approaches. While data-driven approaches such as Convolutional Neural Network (CNN) based methods have shown great promises, they are difficult to use in practice due to their high computational complexity and lack of transferability. Here, we propose a highly efficient CNN-based model that maintains fast computations similar to the knowledge-driven methods without excessive hardware requirements such as GPUs. We create a training dataset using FocusPath which encompasses diverse tissue slides across nine different stain colors, where the stain diversity greatly helps the model to learn diverse color spectrum and tissue structures. In our attempt to reduce the CNN complexity, we find with surprise that even trimming down the CNN to the minimal level, it still achieves a highly competitive performance. We introduce a novel comprehensive evaluation dataset, the largest of its kind, annotated and compiled from TCGA repository for model assessment and comparison, for which the proposed method exhibits superior precision-speed trade-off when compared with existing knowledge-driven and data-driven FQA approaches.