论文标题
解释弱镜头的深度学习模型
Interpreting deep learning models for weak lensing
论文作者
论文摘要
深神经网络(DNN)是强大的算法,已被证明能够从弱透镜(WL)数据集中提取非高斯信息。了解数据中的哪些特征决定了这些嵌套的非线性算法的输出是一项重要但具有挑战性的任务。我们分析了在先前工作中发现的DNN,以准确恢复WL收敛的模拟地图($κ$)中的宇宙学参数。我们从三个常用的WL统计数据(功率谱,镜头峰和Minkowski功能)的组合中得出了宇宙参数对$(ω_m,σ_8)$的限制,使用了射线跟踪的模拟$κ$κ$κ$ maps。我们表明,即使在存在现实的形状噪声级别的情况下,网络也可以将相对于此组合的推断参数约束提高20美元\%$。我们采用一系列良好的显着性方法来解释DNN,并发现最相关的像素是具有极端$κ$值的像素。对于无噪声地图,负$κ$的区域为$ 86-69 \%的DNN输出归因$ $ $,定义为输入空间中显着性的正方形。在形状鼻子的情况下,归因集中在高收敛区域,在$κ>3σ_κ$的区域中,归因为$ 36-68 \%$。
Deep Neural Networks (DNNs) are powerful algorithms that have been proven capable of extracting non-Gaussian information from weak lensing (WL) data sets. Understanding which features in the data determine the output of these nested, non-linear algorithms is an important but challenging task. We analyze a DNN that has been found in previous work to accurately recover cosmological parameters in simulated maps of the WL convergence ($κ$). We derive constraints on the cosmological parameter pair $(Ω_m,σ_8)$ from a combination of three commonly used WL statistics (power spectrum, lensing peaks, and Minkowski functionals), using ray-traced simulated $κ$ maps. We show that the network can improve the inferred parameter constraints relative to this combination by $20\%$ even in the presence of realistic levels of shape noise. We apply a series of well established saliency methods to interpret the DNN and find that the most relevant pixels are those with extreme $κ$ values. For noiseless maps, regions with negative $κ$ account for $86-69\%$ of the attribution of the DNN output, defined as the square of the saliency in input space. In the presence of shape nose, the attribution concentrates in high convergence regions, with $36-68\%$ of the attribution in regions with $κ> 3 σ_κ$.