论文标题
水滴种群动力学的间歇性加速在多云和清除空气环境之间的界面层中
Intermittency acceleration of water droplet population dynamics inside the interfacial layer between cloudy and clear air environments
论文作者
论文摘要
我们使用直接的数值模拟来研究位于湍流层上的扰动的时间演变,该扰动通常将云与周围的透明空气分开。在这个无剪切的层上,湍流的动能梯度自然形成。在这里,采用局部初始温度波动形式的有限扰动,以模拟背景湍流中的流体动力不稳定。然后解决两种直径相反类型的降落类型的数值初始值问题。具体而言,我们考虑了半径为15 $ m $ m的液滴的单分散种群,而半径为0.6-30 $μ$ m的poly-disperse分布。对于这两种分布,据观察,蒸发和凝结在均匀的多云区域和界面各向异性混合区域内的重量截然不同。据观察,掉落碰撞的动力学受到宿主区域的湍流结构的高度影响。在能量衰减瞬变期间,这两个种群显示出一个共同的方面。这就是界面层帽子中碰撞的可能性增加,容纳强烈的各向异性速度波动。实际上,该层诱导了液滴动能和大小的增强分化。 polydisperse和单分散的初始粒子分布都包含$ 10^7 $滴,与$ 0.8 g/m^3 $的初始液体水含量相匹配。给出了对种群平衡方程中使用的几何碰撞的湍流碰撞内核的估计。关于在云界面区域内获得的两个不稳定的非恒星碰撞内核的结构进行了初步讨论。
We use direct numerical simulation to study the temporal evolution of a perturbation localized on the turbulent layer that typically separates a cloud from the surrounding clear air. Across this shearless layer, a turbulent kinetic energy gradient naturally forms. Here, a finite perturbation in the form of a local initial temperature fluctuation is applied to simulate a hydrodynamic instability inside the background turbulent air flow. A numerical initial value problem for two diametrically opposite types of drop population distributions is then solved. Specifically, we consider a mono-disperse population of droplets of 15 $μ$m of radius and a poly-disperse distribution with radii in the range 0.6 - 30 $μ$m. For both distributions, it is observed that the evaporation and condensation have a dramatically different weight inside the homogeneous cloudy region and the interfacial anisotropic mixing region. It is observed that the dynamics of drop collisions is highly effected by the turbulence structure of the host region. The two populations show a common aspect during their energy decay transient. That is the increased probability of collisions in the interfacial layer hat houses intense anisotropic velocity fluctuations. This layer, in fact, induces an enhanced differentiation on droplets kinetic energy and sizes. Both polydisperse and monodisperse initial particle distributions contain $10^7$ droplets, matching an initial liquid water content of $0.8 g/m^3$. An estimate of the turbulent collision kernel for geometric collisions used in the population balance equations is given. A preliminary discussion is presented on the structure of the two unsteady non ergodic collision kernels obtained inside the cloud interface region.