论文标题
迈向自动化的神经互动发现,以进行点击率预测
Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction
论文作者
论文摘要
点击率(CTR)预测是推荐系统中最重要的机器学习任务之一,推动了数十亿消费者的个性化体验。神经体系结构搜索(NAS)作为一个新兴领域,已经证明了其在发现强大的神经网络体系结构方面的能力,这激发了我们探索其CTR预测的潜力。由于1)不同的非结构化特征交互,2)异质特征空间和3)高数据量和内在数据随机性,因此有效地构建,搜索和比较有效的不同体系结构对推荐模型来说是具有挑战性的。为了应对这些挑战,我们提出了一个自动交互体系结构发现了名为AutoCtr的CTR预测框架。通过将简单但代表性的交互作用作为虚拟构建块并将其接线到直接无环形图的空间,AutoCTR在体系结构上使用学习到秩指导进行进化体系结构探索,并使用低保真模型实现加速。经验分析证明了与人工制作的体系结构相比,AutoCTR对不同数据集的有效性。发现的体系结构还具有不同数据集之间的概括性和可传递性。
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems, driving personalized experience for billions of consumers. Neural architecture search (NAS), as an emerging field, has demonstrated its capabilities in discovering powerful neural network architectures, which motivates us to explore its potential for CTR predictions. Due to 1) diverse unstructured feature interactions, 2) heterogeneous feature space, and 3) high data volume and intrinsic data randomness, it is challenging to construct, search, and compare different architectures effectively for recommendation models. To address these challenges, we propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR. Via modularizing simple yet representative interactions as virtual building blocks and wiring them into a space of direct acyclic graphs, AutoCTR performs evolutionary architecture exploration with learning-to-rank guidance at the architecture level and achieves acceleration using low-fidelity model. Empirical analysis demonstrates the effectiveness of AutoCTR on different datasets comparing to human-crafted architectures. The discovered architecture also enjoys generalizability and transferability among different datasets.