论文标题

泊松超平面相交点过程的弱收敛性

Weak convergence of the intersection point process of Poisson hyperplanes

论文作者

Baci, Anastas, Bonnet, Gilles, Thäle, Christoph

论文摘要

本文介绍了$ \ mathbb {r}^d $强度$ t> 0 $中的固定和各向同性泊松超平面过程的交点过程,其中只考虑了与半径$ r> 0 $相交的超级平面。服用$ r = t^{ - \ frac {d} {d+1}} $,这表明,此点过程在分布中以$ t \ to \ infty $的形式收敛到$ \ mathbb {r}^r}^d \ setMinus \ setMinus \ {0 \}的强度量的Poisson Point Postes $ \ | x \ |^{ - (D+1)} $相对于Lebesgue度量。还提供了与坎托维奇 - 罗宾斯坦距离有关的收敛速度的结合。背景是抽象泊松空间上的一般功能泊松近似定理。还讨论了相交点过程的凸壳的弱收敛性以及其$ f $ - 矢量的收敛性的影响,从而在计算几何学中讨论了devroye和devroye和toussaint的猜想[J. \算法14.3(1993),381--394]。

This paper deals with the intersection point process of a stationary and isotropic Poisson hyperplane process in $\mathbb{R}^d$ of intensity $t>0$, where only hyperplanes that intersect a centred ball of radius $R>0$ are considered. Taking $R=t^{-\frac{d}{d+1}}$ it is shown that this point process converges in distribution, as $t\to\infty$, to a Poisson point process on $\mathbb{R}^d\setminus\{0\}$ whose intensity measure has power-law density proportional to $\|x\|^{-(d+1)}$ with respect to the Lebesgue measure. A bound on the speed of convergence in terms of the Kantorovich-Rubinstein distance is provided as well. In the background is a general functional Poisson approximation theorem on abstract Poisson spaces. Implications on the weak convergence of the convex hull of the intersection point process and the convergence of its $f$-vector are also discussed, disproving and correcting thereby a conjecture of Devroye and Toussaint [J.\ Algorithms 14.3 (1993), 381--394] in computational geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源