论文标题
人造神经网络在节拍上堵塞
Artificial Neural Networks Jamming on the Beat
论文作者
论文摘要
本文解决了长期相关性的问题,这是象征音乐的特征,是现代生成算法的挑战。它暗示了这一挑战的非常简单的解决方法,即,产生的鼓模式可以进一步用作旋律产生的基础。该论文与相应的旋律一起提供了大型鼓图案数据集。它探讨了鼓模式产生的两种可能的方法。探索一个可以通过给定的音乐风格产生新的鼓图案的鼓图案的潜在空间。最后,该论文表明,可以训练一个简单的人造神经网络,以生成与这些用作输入的这些鼓模式相对应的旋律。结果系统可用于端到端的象征性音乐,具有类似歌曲的结构和音符之间的较高的长尺度相关性。
This paper addresses the issue of long-scale correlations that is characteristic for symbolic music and is a challenge for modern generative algorithms. It suggests a very simple workaround for this challenge, namely, generation of a drum pattern that could be further used as a foundation for melody generation. The paper presents a large dataset of drum patterns alongside with corresponding melodies. It explores two possible methods for drum pattern generation. Exploring a latent space of drum patterns one could generate new drum patterns with a given music style. Finally, the paper demonstrates that a simple artificial neural network could be trained to generate melodies corresponding with these drum patters used as inputs. Resulting system could be used for end-to-end generation of symbolic music with song-like structure and higher long-scale correlations between the notes.