论文标题
统一域的Quasimöbius不变性
Quasimöbius invariance of uniform domains
论文作者
论文摘要
在本文中,我们研究了Banach空间中均匀域的Quasimöbius不变性。我们首先研究了Banach空间中域某些几何特性的含义,例如(直径)均匀性,$Δ$ - 均匀性和Min-Max特性。然后,我们证明,如果域是$ψ$ - 自然的,那么所有这些条件都是等效的。作为申请,我们部分回答了Väisälä提出的一个公开问题,并提供了一种新方法,以证明M. Huang,Y。Li,M。Vuorinen和X. Wang的最新结果[在Quasimöbius映射上,在真正的Banach Spaces中,以色列J. Math。 198(2013),467-486],这也为Väisälä提出的另一个问题提供了答案。
In this paper, we study quasimöbius invariance of uniform domains in Banach spaces. We first investigate implications of certain geometric properties of domains in Banach spaces, such as the (diameter) uniformity, the $δ$-uniformity and the min-max property. Then we show that all of these conditions are equivalent if the domain is $ψ$-natural. As applications, we answer partially to an open question proposed by Väisälä, and provide a new method to prove a recent result of M. Huang, Y. Li, M. Vuorinen, and X. Wang in [On quasimöbius maps in real Banach spaces, Israel J. Math. 198 (2013), 467-486], which also gives an answer to another question raised by Väisälä.