论文标题
在高雷诺数字上自由上升球体的运动学和动力学
Kinematics and dynamics of freely rising spheroids at high Reynolds numbers
论文作者
论文摘要
我们通过实验研究几何各向异性对静止液中浮力椭圆形颗粒的影响。所有其他参数,例如Galileo Number $ GA \约6000美元,粒子密度比$γ\约0.53 $保持恒定。粒子的几何纵横比($χ$)系统地从$ = 0.2 $ = 0.2(固定)到5(prate)。基于跟踪所有粒子运动的程度,我们确定了六个以独特的上升动力学为特征的机制。首先,以$ 0.83的\ leχ\ le 1.20 $,观察到增加的旋转动力学,并且粒子在类似“翻滚”的运动中半规则地翻转。其次,对于以$ 0.29 \ leχ\ le 0.75 $的固定颗粒,可以观察到平面常规“ Zig-Zag”运动,其中阻力系数独立于$χ$。第三,发现最极端的几何形状($χ\ le 0.25 $)是一种类似“扑打”的行为,其特征是振荡平面的进攻和阻力系数的增加。对于岩体的几何形状,我们观察到了两个有助于复杂轨迹的共存振荡模式:第一个与指向矢量的振荡有关,第二个与垂直于粒子对称轴的运动相对应。我们确定了“纵向”制度($ 1.33 \ leχ\ le 2.5 $),其中两种模式均处于活动状态,而另一种模式为“ broadside” -Regime($ 3 \ leχ\ le 4 $),其中仅存在第二种模式。值得注意的是,对于最大的颗粒($χ= 5 $),我们观察到完全不同的“螺旋”升高,具有完全独特的功能。
We experimentally investigate the effect of geometrical anisotropy for buoyant ellipsoidal particles rising in a still fluid. All other parameters, such as the Galileo number $Ga \approx 6000$ and the particle density ratio $Γ\approx 0.53$ are kept constant. The geometrical aspect ratio, $χ$, of the particle is varied systematically from $χ$ = 0.2 (oblate) to 5 (prolate). Based on tracking all degrees of particle motion, we identify six regimes characterised by distinct rise dynamics. Firstly, for $0.83 \le χ\le 1.20$, increased rotational dynamics are observed and the particle flips over semi-regularly in a "tumbling"-like motion. Secondly, for oblate particles with $0.29 \le χ\le 0.75$, planar regular "zig-zag" motion is observed, where the drag coefficient is independent of $χ$. Thirdly, for the most extreme oblate geometries ($χ\le 0.25$) a "flutter"-like behaviour is found, characterised by precession of the oscillation plane and an increase in the drag coefficient. For prolate geometries, we observed two coexisting oscillation modes that contribute to complex trajectories: the first is related to oscillations of the pointing vector and the second corresponds to a motion perpendicular to the particle's symmetry axis. We identify a "longitudinal" regime ($1.33 \le χ\le 2.5$), where both modes are active and a different one, the "broadside"-regime ($3 \le χ\le 4$), where only the second mode is present. Remarkably, for the most prolate particles ($χ= 5$), we observe an entirely different "helical" rise with completely unique features.